使用 DateTimeIndex 计算 Dataframe 中字符串的出现次数
Count occurrences of a string in a Dataframe with a DateTimeIndex
我有一个具有如下时间序列的 DataFrame:
timestamp v IceCreamOrder Location
2018-01-03 02:21:16 Chocolate South
2018-01-03 12:41:12 Vanilla North
2018-01-03 14:32:15 Strawberry North
2018-01-03 15:32:15 Strawberry North
2018-01-04 02:21:16 Strawberry North
2018-01-04 02:21:16 Rasberry North
2018-01-04 12:41:12 Vanilla North
2018-01-05 15:32:15 Chocolate North
我想得到这样的计数:
timestamp strawberry chocolate
1/2/14 0 1
1/3/14 2 0
1/4/14 1 0
1/4/14 0 0
1/4/14 0 0
1/5/14 0 1
由于这是时间序列数据,我一直以 pandas datetimeindex 格式存储时间戳。
我首先尝试获取 'strawberry' 的计数。我最终得到了这段不起作用的代码。
mydf = (inputdf.set_index('timestamp').groupby(pd.Grouper(freq = 'D'))['IceCreamOrder'].count('Strawberry'))
导致错误:
TypeError: count() takes 1 positional argument but 2 were given
如有任何帮助,我们将不胜感激。
使用 eq
(==
) 比较列 string
并聚合 sum
计数 True
值,因为 True
s是像 1
s:
这样的进程
#convert to datetimes if necessary
inputdf['timestamp'] = pd.to_datetime(inputdf['timestamp'], format='%m/%d/%y')
print (inputdf)
timestamp IceCreamOrder Location
0 2018-01-02 Chocolate South
1 2018-01-03 Vanilla North
2 2018-01-03 Strawberry North
3 2018-01-03 Strawberry North
4 2018-01-04 Strawberry North
5 2018-01-04 Rasberry North
6 2018-01-04 Vanilla North
7 2018-01-05 Chocolate North
mydf = (inputdf.set_index('timestamp')['IceCreamOrder']
.eq('Strawberry')
.groupby(pd.Grouper(freq = 'D'))
.sum())
print (mydf)
timestamp
2018-01-02 0.0
2018-01-03 2.0
2018-01-04 1.0
2018-01-05 0.0
Freq: D, Name: IceCreamOrder, dtype: float64
如果要计算所有 type
,请将列 IceCreamOrder
添加到 groupby
并汇总 GroupBy.size
:
mydf1 = (inputdf.set_index('timestamp')
.groupby([pd.Grouper(freq = 'D'), 'IceCreamOrder'])
.size())
print (mydf1)
timestamp IceCreamOrder
2018-01-02 Chocolate 1
2018-01-03 Strawberry 2
Vanilla 1
2018-01-04 Rasberry 1
Strawberry 1
Vanilla 1
2018-01-05 Chocolate 1
dtype: int64
mydf1 = (inputdf.set_index('timestamp')
.groupby([pd.Grouper(freq = 'D'),'IceCreamOrder'])
.size()
.unstack(fill_value=0))
print (mydf1)
IceCreamOrder Chocolate Rasberry Strawberry Vanilla
timestamp
2018-01-02 1 0 0 0
2018-01-03 0 0 2 1
2018-01-04 0 1 1 1
2018-01-05 1 0 0 0
如果所有datetime
都没有time
:
mydf1 = (inputdf.groupby(['timestamp', 'IceCreamOrder'])
.size()
.unstack(fill_value=0))
print (mydf1)
IceCreamOrder Chocolate Rasberry Strawberry Vanilla
timestamp
2018-01-02 1 0 0 0
2018-01-03 0 0 2 1
2018-01-04 0 1 1 1
2018-01-05 1 0 0 0
使用pivot_table
:
df.pivot_table(
index='timestamp', columns='IceCreamOrder', aggfunc='size'
).fillna(0).astype(int)
IceCreamOrder Chocolate Rasberry Strawberry Vanilla
timestamp
2018-01-02 1 0 0 0
2018-01-03 0 0 2 1
2018-01-04 0 1 1 1
2018-01-05 1 0 0 0
或crosstab
:
pd.crosstab(df.timestamp, df.IceCreamOrder)
IceCreamOrder Chocolate Rasberry Strawberry Vanilla
timestamp
2018-01-02 1 0 0 0
2018-01-03 0 0 2 1
2018-01-04 0 1 1 1
2018-01-05 1 0 0 0
如果您的 timestamp
列有时间,只需在使用 dt.date
使用这些操作之前删除它们(如果您不想修改该列,也许可以创建一个新系列用于旋转):
df.timestamp = df.timestamp.dt.date
我有一个具有如下时间序列的 DataFrame:
timestamp v IceCreamOrder Location
2018-01-03 02:21:16 Chocolate South
2018-01-03 12:41:12 Vanilla North
2018-01-03 14:32:15 Strawberry North
2018-01-03 15:32:15 Strawberry North
2018-01-04 02:21:16 Strawberry North
2018-01-04 02:21:16 Rasberry North
2018-01-04 12:41:12 Vanilla North
2018-01-05 15:32:15 Chocolate North
我想得到这样的计数:
timestamp strawberry chocolate
1/2/14 0 1
1/3/14 2 0
1/4/14 1 0
1/4/14 0 0
1/4/14 0 0
1/5/14 0 1
由于这是时间序列数据,我一直以 pandas datetimeindex 格式存储时间戳。
我首先尝试获取 'strawberry' 的计数。我最终得到了这段不起作用的代码。
mydf = (inputdf.set_index('timestamp').groupby(pd.Grouper(freq = 'D'))['IceCreamOrder'].count('Strawberry'))
导致错误:
TypeError: count() takes 1 positional argument but 2 were given
如有任何帮助,我们将不胜感激。
使用 eq
(==
) 比较列 string
并聚合 sum
计数 True
值,因为 True
s是像 1
s:
#convert to datetimes if necessary
inputdf['timestamp'] = pd.to_datetime(inputdf['timestamp'], format='%m/%d/%y')
print (inputdf)
timestamp IceCreamOrder Location
0 2018-01-02 Chocolate South
1 2018-01-03 Vanilla North
2 2018-01-03 Strawberry North
3 2018-01-03 Strawberry North
4 2018-01-04 Strawberry North
5 2018-01-04 Rasberry North
6 2018-01-04 Vanilla North
7 2018-01-05 Chocolate North
mydf = (inputdf.set_index('timestamp')['IceCreamOrder']
.eq('Strawberry')
.groupby(pd.Grouper(freq = 'D'))
.sum())
print (mydf)
timestamp
2018-01-02 0.0
2018-01-03 2.0
2018-01-04 1.0
2018-01-05 0.0
Freq: D, Name: IceCreamOrder, dtype: float64
如果要计算所有 type
,请将列 IceCreamOrder
添加到 groupby
并汇总 GroupBy.size
:
mydf1 = (inputdf.set_index('timestamp')
.groupby([pd.Grouper(freq = 'D'), 'IceCreamOrder'])
.size())
print (mydf1)
timestamp IceCreamOrder
2018-01-02 Chocolate 1
2018-01-03 Strawberry 2
Vanilla 1
2018-01-04 Rasberry 1
Strawberry 1
Vanilla 1
2018-01-05 Chocolate 1
dtype: int64
mydf1 = (inputdf.set_index('timestamp')
.groupby([pd.Grouper(freq = 'D'),'IceCreamOrder'])
.size()
.unstack(fill_value=0))
print (mydf1)
IceCreamOrder Chocolate Rasberry Strawberry Vanilla
timestamp
2018-01-02 1 0 0 0
2018-01-03 0 0 2 1
2018-01-04 0 1 1 1
2018-01-05 1 0 0 0
如果所有datetime
都没有time
:
mydf1 = (inputdf.groupby(['timestamp', 'IceCreamOrder'])
.size()
.unstack(fill_value=0))
print (mydf1)
IceCreamOrder Chocolate Rasberry Strawberry Vanilla
timestamp
2018-01-02 1 0 0 0
2018-01-03 0 0 2 1
2018-01-04 0 1 1 1
2018-01-05 1 0 0 0
使用pivot_table
:
df.pivot_table(
index='timestamp', columns='IceCreamOrder', aggfunc='size'
).fillna(0).astype(int)
IceCreamOrder Chocolate Rasberry Strawberry Vanilla
timestamp
2018-01-02 1 0 0 0
2018-01-03 0 0 2 1
2018-01-04 0 1 1 1
2018-01-05 1 0 0 0
或crosstab
:
pd.crosstab(df.timestamp, df.IceCreamOrder)
IceCreamOrder Chocolate Rasberry Strawberry Vanilla
timestamp
2018-01-02 1 0 0 0
2018-01-03 0 0 2 1
2018-01-04 0 1 1 1
2018-01-05 1 0 0 0
如果您的 timestamp
列有时间,只需在使用 dt.date
使用这些操作之前删除它们(如果您不想修改该列,也许可以创建一个新系列用于旋转):
df.timestamp = df.timestamp.dt.date