NameError: name 'fit_classifier' is not defined
NameError: name 'fit_classifier' is not defined
我正在尝试做一个文本分类器
import pandas as pd
import pandas
from sklearn import svm
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer
import numpy as np
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfTransformer
from sklearn.multiclass import OneVsOneClassifier
from sklearn.svm import SVC
from sklearn import cross_validation
from sklearn.metrics import confusion_matrix
dataset = pd.read_csv('data.csv', encoding = 'utf-8')
data = dataset['text']
labels = dataset['label']
X_train, X_test, y_train, y_test = train_test_split (data, labels, test_size = 0.2, random_state = 0)
count_vector = CountVectorizer()
tfidf = TfidfTransformer()
classifier = OneVsOneClassifier(SVC(kernel = 'linear', random_state = 84))
train_counts = count_vector.fit_transform(X_train)
train_tfidf = tfidf.fit_transform(train_counts)
classifier.fit(train_tfidf, y_train)
test_counts = count_vector.transform(X_test)
test_tfidf = tfidf.transform(test_counts)
classifier.predict(test_tfidf)
fit_classifier(X_train, y_train)
predicted = predict(X_test)
print("confusion matrix")
print(confusion_matrix(X_test, predicted, labels = labels))
print("cross validation")
test_counts = count_vector.fit_transform(data)
test_tfidf = tfidf.fit_transform(test_counts)
scores = cross_validation.cross_val_score(classifier, test_tfidf, labels, cv = 10)
print(scores)
print("Accuracy: {} +/- {}".format(scores.mean(), scores.std() * 2))
但是我有如下错误,无法理解。
Traceback (most recent call last):
File "classificacao.py", line 37, in
fit_classifier(X_train, y_train)
NameError: name 'fit_classifier' is not defined
但是 fit 并不总是默认定义的?
您正在调用一个不存在的函数:
fit_classifier(X_train, y_train)
为了适合您的分类器,您将使用
classifier.fit(X_train, y_train)
相反。
尝试预测测试数据时,您会遇到同样的错误。
您需要更改
predicted = predict(X_test)
到
predicted = classifier.predict(X_test)
你的 Confusionmatrix 应该得到你的标签,而不是你的测试数据:
print(confusion_matrix(y_test, predicted, labels = labels))
我正在尝试做一个文本分类器
import pandas as pd
import pandas
from sklearn import svm
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer
import numpy as np
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfTransformer
from sklearn.multiclass import OneVsOneClassifier
from sklearn.svm import SVC
from sklearn import cross_validation
from sklearn.metrics import confusion_matrix
dataset = pd.read_csv('data.csv', encoding = 'utf-8')
data = dataset['text']
labels = dataset['label']
X_train, X_test, y_train, y_test = train_test_split (data, labels, test_size = 0.2, random_state = 0)
count_vector = CountVectorizer()
tfidf = TfidfTransformer()
classifier = OneVsOneClassifier(SVC(kernel = 'linear', random_state = 84))
train_counts = count_vector.fit_transform(X_train)
train_tfidf = tfidf.fit_transform(train_counts)
classifier.fit(train_tfidf, y_train)
test_counts = count_vector.transform(X_test)
test_tfidf = tfidf.transform(test_counts)
classifier.predict(test_tfidf)
fit_classifier(X_train, y_train)
predicted = predict(X_test)
print("confusion matrix")
print(confusion_matrix(X_test, predicted, labels = labels))
print("cross validation")
test_counts = count_vector.fit_transform(data)
test_tfidf = tfidf.fit_transform(test_counts)
scores = cross_validation.cross_val_score(classifier, test_tfidf, labels, cv = 10)
print(scores)
print("Accuracy: {} +/- {}".format(scores.mean(), scores.std() * 2))
但是我有如下错误,无法理解。
Traceback (most recent call last):
File "classificacao.py", line 37, in fit_classifier(X_train, y_train)
NameError: name 'fit_classifier' is not defined
但是 fit 并不总是默认定义的?
您正在调用一个不存在的函数:
fit_classifier(X_train, y_train)
为了适合您的分类器,您将使用
classifier.fit(X_train, y_train)
相反。 尝试预测测试数据时,您会遇到同样的错误。 您需要更改
predicted = predict(X_test)
到
predicted = classifier.predict(X_test)
你的 Confusionmatrix 应该得到你的标签,而不是你的测试数据:
print(confusion_matrix(y_test, predicted, labels = labels))