使用 VHDL 的 RTL 硬件设计,示例 7.1
RTL Hardware Design Using VHDL, Example 7.1
7.1 - 考虑一个可以执行四种运算的算术电路:a+b、a-b、a+1 和 a-1,其中 a 和 b 是 16 位无符号数,所需运算由 a 2 指定-位控制信号,ctrl.
是否可以只用一个加法器而不使用时序逻辑来设计这个电路
我用 2 的互补逻辑设计了这个电路,但我不能添加逻辑 (a + (not b) + 1) 只有一个没有存储器组件的加法器
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.NUMERIC_STD.ALL;
entity Ex_7_1_b is
generic( BUS_WIDTH : integer := 16 );
port ( a : in STD_LOGIC_VECTOR (BUS_WIDTH - 1 downto 0);
b : in STD_LOGIC_VECTOR (BUS_WIDTH - 1 downto 0);
ctrl : in STD_LOGIC_VECTOR (1 downto 0);
y : out STD_LOGIC_VECTOR (BUS_WIDTH - 1 downto 0)
);
end Ex_7_1_b;
architecture Behavioral of Ex_7_1_b is
signal adder : unsigned(BUS_WIDTH - 1 downto 0);
signal mux_sign : unsigned(BUS_WIDTH - 1 downto 0);
signal mux_inp_sel : unsigned(BUS_WIDTH - 1 downto 0);
signal mux_val : unsigned(BUS_WIDTH - 1 downto 0);
signal result : unsigned(BUS_WIDTH - 1 downto 0);
begin
mux_val <= to_unsigned(0, mux_val'length) when ctrl(1) = '1' else to_unsigned(1, mux_val'length);
mux_inp_sel <= mux_val when ctrl(0) = '1' else unsigned(b);
mux_sign <= not (mux_inp_sel) when ctrl(1) = '1' else mux_inp_sel;
result <= unsigned(a) + mux_sign;
y <= std_logic_vector(result);
end Behavioral;
我设计了这个电路 Renaud Pacalet 贡献了。
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.NUMERIC_STD.ALL;
entity Ex_7_1_b is
generic( g_BUS_WIDTH : integer := 16 );
port (
i_a : in std_logic_vector (g_BUS_WIDTH - 1 downto 0);
i_b : in std_logic_vector (g_BUS_WIDTH - 1 downto 0);
i_ctrl : in std_logic_vector (1 downto 0);
o_y : out std_logic_vector (g_BUS_WIDTH - 1 downto 0)
);
end Ex_7_1_b;
architecture RTL of Ex_7_1_b is
signal r_A_Ext, r_B_Ext : unsigned(g_BUS_WIDTH downto 0);
signal r_Carry_In : std_logic;
signal r_Adder : unsigned(g_BUS_WIDTH - 1 downto 0);
signal w_Mux_Inv : unsigned(g_BUS_WIDTH - 1 downto 0);
signal w_Mux_Sel : unsigned(g_BUS_WIDTH - 1 downto 0);
signal r_Result : unsigned(g_BUS_WIDTH downto 0);
begin
r_A_Ext <= unsigned(i_a & '1');
w_Mux_Sel <= to_unsigned(1, w_Mux_Sel'length) when i_ctrl(1) = '1' else unsigned(i_b);
w_Mux_Inv <= not (w_Mux_Sel) when i_ctrl(0) = '1' else w_Mux_Sel;
r_Carry_In <= '1' when i_ctrl(0) = '1' else '0';
r_B_Ext <= w_Mux_Inv & r_Carry_In;
r_Result <= r_A_Ext + r_B_Ext;
o_y <= std_logic_vector(r_Result(g_BUS_WIDTH downto 1));
end RTL;
您自己找到的解决方案很好,但它使用 17 位加法器而不是 16 位加法器。使用足够智能的合成器,它应该不会有任何区别。为了完整起见,这里还有另一个 16 位(并且稍微简单一些)的解决方案:
architecture RTL of Ex_7_1_b is
signal x, y0, y1: unsigned(g_BUS_WIDTH - 1 downto 0);
begin
x <= unsigned(i_a);
y0 <= unsigned(i_b) when i_ctrl(1) = '0' else x"0001";
y1 <= not y0 when i_ctrl(0) = '1' else y0;
o_y <= std_logic_vector(x + y1 + i_ctrl(0));
end architecture RTL;
注意:这仅适用于定义了 unsigned
和 std_logic
添加的 VHDL 2008。如果您必须使用旧版本的 VHDL 标准,请改用以下版本:
architecture RTL of Ex_7_1_b is
signal x, y0, y1: unsigned(g_BUS_WIDTH - 1 downto 0);
signal c: natural range 0 to 1;
begin
x <= unsigned(i_a);
y0 <= unsigned(i_b) when i_ctrl(1) = '0' else x"0001";
y1 <= not y0 when i_ctrl(0) = '1' else y0;
c <= 1 when i_ctrl(0) = '1' else 0;
o_y <= std_logic_vector(x + y1 + c);
end architecture RTL;
7.1 - 考虑一个可以执行四种运算的算术电路:a+b、a-b、a+1 和 a-1,其中 a 和 b 是 16 位无符号数,所需运算由 a 2 指定-位控制信号,ctrl.
是否可以只用一个加法器而不使用时序逻辑来设计这个电路
我用 2 的互补逻辑设计了这个电路,但我不能添加逻辑 (a + (not b) + 1) 只有一个没有存储器组件的加法器
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.NUMERIC_STD.ALL;
entity Ex_7_1_b is
generic( BUS_WIDTH : integer := 16 );
port ( a : in STD_LOGIC_VECTOR (BUS_WIDTH - 1 downto 0);
b : in STD_LOGIC_VECTOR (BUS_WIDTH - 1 downto 0);
ctrl : in STD_LOGIC_VECTOR (1 downto 0);
y : out STD_LOGIC_VECTOR (BUS_WIDTH - 1 downto 0)
);
end Ex_7_1_b;
architecture Behavioral of Ex_7_1_b is
signal adder : unsigned(BUS_WIDTH - 1 downto 0);
signal mux_sign : unsigned(BUS_WIDTH - 1 downto 0);
signal mux_inp_sel : unsigned(BUS_WIDTH - 1 downto 0);
signal mux_val : unsigned(BUS_WIDTH - 1 downto 0);
signal result : unsigned(BUS_WIDTH - 1 downto 0);
begin
mux_val <= to_unsigned(0, mux_val'length) when ctrl(1) = '1' else to_unsigned(1, mux_val'length);
mux_inp_sel <= mux_val when ctrl(0) = '1' else unsigned(b);
mux_sign <= not (mux_inp_sel) when ctrl(1) = '1' else mux_inp_sel;
result <= unsigned(a) + mux_sign;
y <= std_logic_vector(result);
end Behavioral;
我设计了这个电路 Renaud Pacalet 贡献了。
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.NUMERIC_STD.ALL;
entity Ex_7_1_b is
generic( g_BUS_WIDTH : integer := 16 );
port (
i_a : in std_logic_vector (g_BUS_WIDTH - 1 downto 0);
i_b : in std_logic_vector (g_BUS_WIDTH - 1 downto 0);
i_ctrl : in std_logic_vector (1 downto 0);
o_y : out std_logic_vector (g_BUS_WIDTH - 1 downto 0)
);
end Ex_7_1_b;
architecture RTL of Ex_7_1_b is
signal r_A_Ext, r_B_Ext : unsigned(g_BUS_WIDTH downto 0);
signal r_Carry_In : std_logic;
signal r_Adder : unsigned(g_BUS_WIDTH - 1 downto 0);
signal w_Mux_Inv : unsigned(g_BUS_WIDTH - 1 downto 0);
signal w_Mux_Sel : unsigned(g_BUS_WIDTH - 1 downto 0);
signal r_Result : unsigned(g_BUS_WIDTH downto 0);
begin
r_A_Ext <= unsigned(i_a & '1');
w_Mux_Sel <= to_unsigned(1, w_Mux_Sel'length) when i_ctrl(1) = '1' else unsigned(i_b);
w_Mux_Inv <= not (w_Mux_Sel) when i_ctrl(0) = '1' else w_Mux_Sel;
r_Carry_In <= '1' when i_ctrl(0) = '1' else '0';
r_B_Ext <= w_Mux_Inv & r_Carry_In;
r_Result <= r_A_Ext + r_B_Ext;
o_y <= std_logic_vector(r_Result(g_BUS_WIDTH downto 1));
end RTL;
您自己找到的解决方案很好,但它使用 17 位加法器而不是 16 位加法器。使用足够智能的合成器,它应该不会有任何区别。为了完整起见,这里还有另一个 16 位(并且稍微简单一些)的解决方案:
architecture RTL of Ex_7_1_b is
signal x, y0, y1: unsigned(g_BUS_WIDTH - 1 downto 0);
begin
x <= unsigned(i_a);
y0 <= unsigned(i_b) when i_ctrl(1) = '0' else x"0001";
y1 <= not y0 when i_ctrl(0) = '1' else y0;
o_y <= std_logic_vector(x + y1 + i_ctrl(0));
end architecture RTL;
注意:这仅适用于定义了 unsigned
和 std_logic
添加的 VHDL 2008。如果您必须使用旧版本的 VHDL 标准,请改用以下版本:
architecture RTL of Ex_7_1_b is
signal x, y0, y1: unsigned(g_BUS_WIDTH - 1 downto 0);
signal c: natural range 0 to 1;
begin
x <= unsigned(i_a);
y0 <= unsigned(i_b) when i_ctrl(1) = '0' else x"0001";
y1 <= not y0 when i_ctrl(0) = '1' else y0;
c <= 1 when i_ctrl(0) = '1' else 0;
o_y <= std_logic_vector(x + y1 + c);
end architecture RTL;