SparkR:levenshtein 模糊字符串匹配来自 2 个 Spark 数据帧的 2 个变量

SparkR: levenshtein Fuzzy string matching between 2 variables from 2 Spark dataframes

我有 2 个 Spark 数据帧

library(SparkR); library(magrittr)

df1 <- createDataFrame(data.frame(var1 = c("rat", "cat", "bat")))
df2 <- createDataFrame(data.frame(var2 = c("cat3", "bat1", "dog", "toy")))

我需要使用 SparkR 的 levenshtein 函数对来自不同 Spark DataFrames df1 和 df2 的不同长度的 var1 和 var2 进行模糊匹配,以便获得所需的输出。

desired_df <- createDataFrame(data.frame(var2 = c("cat3", "bat1", "dog", "toy"),
                                  var3 = c("cat", "bat", NA_character_, NA_character_)))

我从以下代码开始:

df3 <- df2 %>% SparkR::mutate(dist = levenshtein(df2$var2, df1$var1))

但遇到错误:

org.apache.spark.sql.AnalysisException: Resolved attribute(s) var1#176 missing from var2#178 in operator !Project [var2#178, levenshtein(var2#178, var1#176) AS dist#181].;;
!Project [var2#178, levenshtein(var2#178, var1#176) AS dist#181]

请指教。

您的错误是引用了 table 中不存在于执行计划中的列。

添加 crossJoin 可以解决这个问题:

dist_df <- df1 %>%
  crossJoin(df2) %>% 
  withColumn("dist", levenshtein(df1$var1, df2$var2)) 
dist_df %>% head()
  var1 var2 dist              
1  rat cat3    2
2  rat bat1    2
3  rat  dog    3
4  rat  toy    3
5  cat cat3    1
6  cat bat1    2

从这里您可以使用标准方法 () 找到最接近的匹配项,例如:

best_matches <- dist_df %>% 
  groupBy("var2") %>% 
  agg(struct(dist_df$dist, dist_df$var1) %>% min() %>% alias("match"))

threshold <- 1  # Maximum match distance to keep

result <- best_matches %>% 
  select(
    best_matches$var2, 
    when(best_matches$match.dist <= threshold, best_matches$match.var1) %>% 
      alias("var1"))

result %>% head()
  var2 var1
1  dog <NA>
2 bat1  bat
3 cat3  cat
4  toy <NA>

请记住,这种方法效率很低。 Spark 提供了更好的选项 (Efficient string matching in Apache Spark),但这些选项尚未在 SparkR 中公开,并且仅在 sparklyr.

中部分实现

如果你想保留所有记录,无论质量如何,只需删除 when:

best_matches %>% select(best_matches$var2, best_matches$match.var1) %>% head()
  var2 var1
1  dog  bat
2 bat1  bat
3 cat3  cat
4  toy  bat