如何计算两个树状图中两个个体之间或两种聚类方法之间的共生相似性?
How to calculate the cophenetic similarity between two individual in two dendograms or between two clustering methods?
如何计算两棵树内(而不是两棵整棵树之间)个体的共生距离?
我想计算两个树状图中每个个体的 similarity/dissimilarity 位置,并使用 R 包 dendextend 和 heatmaply 在组合热图和树状图的行颜色中显示结果。
已聚类的两个观察值之间的共生距离定义为两个观察值首次合并为一个聚类时的组间差异。查看 here for a worked example.For an indepth discussion, I recommend this SO post. And here 你可以看到 R
实现。
感谢大家的帮助,根据vilisSO提供的链接和Grant的回答,我编写了以下代码来计算基于完整数据和数据子样本的两棵树中的cophenetic distance之间的相关性.对于树状图中的每个叶子,计算两棵树 o 中的共生距离向量之间的相关性:
enter image description here
## Compare cophenetic similarity between leaves in two trees build on full data and subsample of the data
# 1 ) Generate random data to build trees
set.seed(2015-04-26)
dat <- (matrix(rnorm(100), 10, 50)) # Dataframe with 50 columns
datSubSample <- dat[, sample(ncol(dat), 30)] #Dataframe with 30 columns sampled from the dataframe with 50
dat_dist1 <- dist(datSubSample)
dat_dist2 <- dist(dat)
hc1 <- hclust(dat_dist1)
hc2 <- hclust(ddat_dist2)
# 2) Build two dendrograms, one based on all data, second based a sample of the data (30 out of 50 columns)
dendrogram1 <- as.dendrogram(hc1)
dendrogram2 <- as.dendrogram(hc2)
# 3) For each leave in a tree get cophenetic distance matrix,
# each column represent distance of that leave to all others in the same tree
cophDistanceMatrix1 <- as.data.frame(as.matrix(cophenetic(dendrogram1)))
cophDistanceMatrix2 <- as.data.frame(as.matrix(cophenetic(dendrogram2)))
# 4) Calculate correlation between cophenetic distance of a leave to all other leaves, between two trees
corPerLeave <- NULL # Vector to store correlations for each leave in two trees
for (leave in colnames(cophDistanceMatrix1)){
cor <- cor(cophDistanceMatrix2[leave],cophDistanceMatrix1[leave])
corPerLeave <- c(corPerLeave, unname(cor))
}
# 5) Convert cophenetic correlation to color to show in side bar of a heatmap
corPerLeave <-corPerLeave/max(corPerLeave) #Scale 0 to 1 correlation
byPal <- colorRampPalette(c('yellow','blue')) #blue yellow color palette, low correlatio = yellow
colCopheneticCor <- byPal(20)[as.numeric(cut(corPerLeave, breaks =20))]
# 6) Plot heatmap with dendrogram with side bar that shows cophenetic correlation for each leave
row_dend <- dendrogram2[enter image description here][1]
x <- as.matrix(dat_dist)
heatmaply(x,colD = row_dend,row_side_colors=colCopheneticCor)
如何计算两棵树内(而不是两棵整棵树之间)个体的共生距离?
我想计算两个树状图中每个个体的 similarity/dissimilarity 位置,并使用 R 包 dendextend 和 heatmaply 在组合热图和树状图的行颜色中显示结果。
已聚类的两个观察值之间的共生距离定义为两个观察值首次合并为一个聚类时的组间差异。查看 here for a worked example.For an indepth discussion, I recommend this SO post. And here 你可以看到 R
实现。
感谢大家的帮助,根据vilisSO提供的链接和Grant的回答,我编写了以下代码来计算基于完整数据和数据子样本的两棵树中的cophenetic distance之间的相关性.对于树状图中的每个叶子,计算两棵树 o 中的共生距离向量之间的相关性: enter image description here
## Compare cophenetic similarity between leaves in two trees build on full data and subsample of the data
# 1 ) Generate random data to build trees
set.seed(2015-04-26)
dat <- (matrix(rnorm(100), 10, 50)) # Dataframe with 50 columns
datSubSample <- dat[, sample(ncol(dat), 30)] #Dataframe with 30 columns sampled from the dataframe with 50
dat_dist1 <- dist(datSubSample)
dat_dist2 <- dist(dat)
hc1 <- hclust(dat_dist1)
hc2 <- hclust(ddat_dist2)
# 2) Build two dendrograms, one based on all data, second based a sample of the data (30 out of 50 columns)
dendrogram1 <- as.dendrogram(hc1)
dendrogram2 <- as.dendrogram(hc2)
# 3) For each leave in a tree get cophenetic distance matrix,
# each column represent distance of that leave to all others in the same tree
cophDistanceMatrix1 <- as.data.frame(as.matrix(cophenetic(dendrogram1)))
cophDistanceMatrix2 <- as.data.frame(as.matrix(cophenetic(dendrogram2)))
# 4) Calculate correlation between cophenetic distance of a leave to all other leaves, between two trees
corPerLeave <- NULL # Vector to store correlations for each leave in two trees
for (leave in colnames(cophDistanceMatrix1)){
cor <- cor(cophDistanceMatrix2[leave],cophDistanceMatrix1[leave])
corPerLeave <- c(corPerLeave, unname(cor))
}
# 5) Convert cophenetic correlation to color to show in side bar of a heatmap
corPerLeave <-corPerLeave/max(corPerLeave) #Scale 0 to 1 correlation
byPal <- colorRampPalette(c('yellow','blue')) #blue yellow color palette, low correlatio = yellow
colCopheneticCor <- byPal(20)[as.numeric(cut(corPerLeave, breaks =20))]
# 6) Plot heatmap with dendrogram with side bar that shows cophenetic correlation for each leave
row_dend <- dendrogram2[enter image description here][1]
x <- as.matrix(dat_dist)
heatmaply(x,colD = row_dend,row_side_colors=colCopheneticCor)