为什么从二进制存档反序列化为 std::map 时会有 space 开销
Why is there space overhead when deserializing from a binary archive into a std::map
这是我的程序:
void loadB(map<unsigned int,myParam> & myParams)
{
std::ifstream ifs("/tmp/all_params", std::ios::in | std::ios::binary);
if( ifs.good() ){
try{
boost::archive::binary_iarchive ia(ifs);
ia >> myParams;
ifs.close();
}catch(boost::archive::archive_exception& ex){
syslog(LOG_NOTICE, "Archive Exception during deserializing params");
}
}else{ }
}
文件“/tmp/all_params”的大小为133M,但当我用loadB()函数加载它时,内存消耗超过650M(1.7G虚拟)。有什么意义吗?
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
16619 root 20 0 1767468 653772 2988 S 3.7 8.0 0:06.21 engine
当然有道理。
例如当 /tmp/all_params
是使用以下程序生成的文件时:
#include <boost/serialization/map.hpp>
#include <boost/archive/binary_oarchive.hpp>
#include <boost/archive/binary_iarchive.hpp>
#include <boost/random.hpp>
#include <boost/bind.hpp>
struct myParam {
std::string data;
template <typename Ar> void serialize(Ar& ar, unsigned) {
ar & data;
}
};
static inline std::string generate_value() {
static auto rand_char = boost::bind(boost::uniform_int<unsigned char>(0,255), boost::mt19937{});
std::string s;
std::generate_n(back_inserter(s), rand_char(), rand_char);
return s;
}
using Map = std::map<unsigned int,myParam>;
Map generate_data(unsigned n) {
Map map;
for (unsigned i=0; i<n; ++i)
map.emplace(i, myParam { generate_value() });
return map;
}
#include <fstream>
#include <iostream>
int main() {
{
std::ofstream ofs("/tmp/all_params", std::ios::binary);
boost::archive::binary_oarchive oa(ofs);
auto data = generate_data(10ul<<19);
oa << data;
std::cout << "Serialized " << data.size() << " entries\n";
}
}
文件在我的系统上是 698miB。内存占用看起来像这样(需要一段时间:)
==27420== Memcheck, a memory error detector
==27420== Copyright (C) 2002-2013, and GNU GPL'd, by Julian Seward et al.
==27420== Using Valgrind-3.10.0.SVN and LibVEX; rerun with -h for copyright info
==27420== Command: ./test
==27420==
Serialized 5242880 entries
==27420==
==27420== HEAP SUMMARY:
==27420== in use at exit: 0 bytes in 0 blocks
==27420== total heap usage: 47,021,247 allocs, 47,021,247 frees, 3,069,877,283 bytes allocated
==27420==
==27420== All heap blocks were freed -- no leaks are possible
==27420==
峰值使用快照为 1.2 GiB:
当然你可以优化内存布局,例如通过使用 Boost Flat Map(使用 ordered_unique_range_t
插入重载!)和自定义分配器,例如那里的字符串。这将 reduce/eliminate 开销:
调整后的代码:
#include <boost/serialization/map.hpp>
#include <boost/serialization/collections_load_imp.hpp>
#include <boost/serialization/collections_save_imp.hpp>
#include <boost/container/flat_map.hpp>
#include <boost/archive/binary_oarchive.hpp>
#include <boost/archive/binary_iarchive.hpp>
#include <boost/random.hpp>
#include <boost/bind.hpp>
#include <boost/utility/string_ref.hpp>
#include <cassert>
namespace string_pool {
static auto pool = []{
std::vector<char> init;
init.reserve(700ul<<20); // 700MiB
return init;
}();
using entry = boost::string_ref;
entry add(std::string const& s) {
assert((pool.capacity() >= (pool.size() + s.size())));
auto it = pool.end();
pool.insert(it, s.begin(), s.end());
return { &*it, s.size() };
}
static inline entry generate_random() {
static auto rand_char = boost::bind(boost::uniform_int<unsigned char>(0,255), boost::mt19937{});
static std::string s; // non-reentrant, but for lazy demo
s.resize(rand_char());
std::generate_n(s.begin(), s.size(), rand_char);
return add(s);
}
}
struct myParam {
string_pool::entry data;
template <typename Ar> void save(Ar& ar, unsigned) const {
std::string s = data.to_string();
ar & s;
}
template <typename Ar> void load(Ar& ar, unsigned) {
std::string s;
ar & s;
data = string_pool::add(s);
}
BOOST_SERIALIZATION_SPLIT_MEMBER()
};
// flat map serialization
namespace boost {
namespace serialization {
template<class Archive, typename...TArgs>
inline void save(
Archive & ar,
const boost::container::flat_map<TArgs...> &t,
const unsigned int /* file_version */
){
boost::serialization::stl::save_collection<
Archive,
boost::container::flat_map<TArgs...>
>(ar, t);
}
template<class Archive, typename...TArgs>
inline void load(Archive & ar, boost::container::flat_map<TArgs...> &t, const unsigned int /* file_version */) {
boost::serialization::stl::load_collection<Archive, boost::container::flat_map<TArgs...>,
boost::serialization::stl::archive_input_map<Archive, boost::container::flat_map<TArgs...> >,
boost::serialization::stl::reserve_imp <boost::container::flat_map<TArgs...> >
>(ar, t);
}
// split non-intrusive serialization function member into separate
// non intrusive save/load member functions
template<class Archive, typename...TArgs>
inline void serialize(Archive & ar, boost::container::flat_map<TArgs...> &t, const unsigned int file_version) {
boost::serialization::split_free(ar, t, file_version);
}
}
}
using Map = boost::container::flat_map<unsigned int,myParam>;
Map generate_data(unsigned n) {
Map map;
map.reserve(n);
std::cout << "Capacity: " << map.capacity() << "\n";
for (unsigned i=0; i<n; ++i)
map.emplace(i, myParam { string_pool::generate_random() });
std::cout << "Capacity: " << map.capacity() << "\n";
std::cout << "Total length: " << std::accumulate(
map.begin(), map.end(), 0ul, [](size_t acc, Map::value_type const& v) {
return acc + v.second.data.size();
}) << "\n";
return map;
}
#include <fstream>
#include <iostream>
int main() {
{
std::ofstream ofs("/tmp/all_params", std::ios::binary);
boost::archive::binary_oarchive oa(ofs);
auto data = generate_data(10ul<<19);
oa << data;
std::cout << "Serialized " << data.size() << " entries\n";
}
}
生成的/tmp/all_params
文件的md5sum与第一个版本的md5sum匹配:ac75521dc0dc65585368677c834613cb
,证明序列化后的数据其实是一样的。
这是我的程序:
void loadB(map<unsigned int,myParam> & myParams)
{
std::ifstream ifs("/tmp/all_params", std::ios::in | std::ios::binary);
if( ifs.good() ){
try{
boost::archive::binary_iarchive ia(ifs);
ia >> myParams;
ifs.close();
}catch(boost::archive::archive_exception& ex){
syslog(LOG_NOTICE, "Archive Exception during deserializing params");
}
}else{ }
}
文件“/tmp/all_params”的大小为133M,但当我用loadB()函数加载它时,内存消耗超过650M(1.7G虚拟)。有什么意义吗?
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
16619 root 20 0 1767468 653772 2988 S 3.7 8.0 0:06.21 engine
当然有道理。
例如当 /tmp/all_params
是使用以下程序生成的文件时:
#include <boost/serialization/map.hpp>
#include <boost/archive/binary_oarchive.hpp>
#include <boost/archive/binary_iarchive.hpp>
#include <boost/random.hpp>
#include <boost/bind.hpp>
struct myParam {
std::string data;
template <typename Ar> void serialize(Ar& ar, unsigned) {
ar & data;
}
};
static inline std::string generate_value() {
static auto rand_char = boost::bind(boost::uniform_int<unsigned char>(0,255), boost::mt19937{});
std::string s;
std::generate_n(back_inserter(s), rand_char(), rand_char);
return s;
}
using Map = std::map<unsigned int,myParam>;
Map generate_data(unsigned n) {
Map map;
for (unsigned i=0; i<n; ++i)
map.emplace(i, myParam { generate_value() });
return map;
}
#include <fstream>
#include <iostream>
int main() {
{
std::ofstream ofs("/tmp/all_params", std::ios::binary);
boost::archive::binary_oarchive oa(ofs);
auto data = generate_data(10ul<<19);
oa << data;
std::cout << "Serialized " << data.size() << " entries\n";
}
}
文件在我的系统上是 698miB。内存占用看起来像这样(需要一段时间:)
==27420== Memcheck, a memory error detector
==27420== Copyright (C) 2002-2013, and GNU GPL'd, by Julian Seward et al.
==27420== Using Valgrind-3.10.0.SVN and LibVEX; rerun with -h for copyright info
==27420== Command: ./test
==27420==
Serialized 5242880 entries
==27420==
==27420== HEAP SUMMARY:
==27420== in use at exit: 0 bytes in 0 blocks
==27420== total heap usage: 47,021,247 allocs, 47,021,247 frees, 3,069,877,283 bytes allocated
==27420==
==27420== All heap blocks were freed -- no leaks are possible
==27420==
峰值使用快照为 1.2 GiB:
当然你可以优化内存布局,例如通过使用 Boost Flat Map(使用 ordered_unique_range_t
插入重载!)和自定义分配器,例如那里的字符串。这将 reduce/eliminate 开销:
调整后的代码:
#include <boost/serialization/map.hpp>
#include <boost/serialization/collections_load_imp.hpp>
#include <boost/serialization/collections_save_imp.hpp>
#include <boost/container/flat_map.hpp>
#include <boost/archive/binary_oarchive.hpp>
#include <boost/archive/binary_iarchive.hpp>
#include <boost/random.hpp>
#include <boost/bind.hpp>
#include <boost/utility/string_ref.hpp>
#include <cassert>
namespace string_pool {
static auto pool = []{
std::vector<char> init;
init.reserve(700ul<<20); // 700MiB
return init;
}();
using entry = boost::string_ref;
entry add(std::string const& s) {
assert((pool.capacity() >= (pool.size() + s.size())));
auto it = pool.end();
pool.insert(it, s.begin(), s.end());
return { &*it, s.size() };
}
static inline entry generate_random() {
static auto rand_char = boost::bind(boost::uniform_int<unsigned char>(0,255), boost::mt19937{});
static std::string s; // non-reentrant, but for lazy demo
s.resize(rand_char());
std::generate_n(s.begin(), s.size(), rand_char);
return add(s);
}
}
struct myParam {
string_pool::entry data;
template <typename Ar> void save(Ar& ar, unsigned) const {
std::string s = data.to_string();
ar & s;
}
template <typename Ar> void load(Ar& ar, unsigned) {
std::string s;
ar & s;
data = string_pool::add(s);
}
BOOST_SERIALIZATION_SPLIT_MEMBER()
};
// flat map serialization
namespace boost {
namespace serialization {
template<class Archive, typename...TArgs>
inline void save(
Archive & ar,
const boost::container::flat_map<TArgs...> &t,
const unsigned int /* file_version */
){
boost::serialization::stl::save_collection<
Archive,
boost::container::flat_map<TArgs...>
>(ar, t);
}
template<class Archive, typename...TArgs>
inline void load(Archive & ar, boost::container::flat_map<TArgs...> &t, const unsigned int /* file_version */) {
boost::serialization::stl::load_collection<Archive, boost::container::flat_map<TArgs...>,
boost::serialization::stl::archive_input_map<Archive, boost::container::flat_map<TArgs...> >,
boost::serialization::stl::reserve_imp <boost::container::flat_map<TArgs...> >
>(ar, t);
}
// split non-intrusive serialization function member into separate
// non intrusive save/load member functions
template<class Archive, typename...TArgs>
inline void serialize(Archive & ar, boost::container::flat_map<TArgs...> &t, const unsigned int file_version) {
boost::serialization::split_free(ar, t, file_version);
}
}
}
using Map = boost::container::flat_map<unsigned int,myParam>;
Map generate_data(unsigned n) {
Map map;
map.reserve(n);
std::cout << "Capacity: " << map.capacity() << "\n";
for (unsigned i=0; i<n; ++i)
map.emplace(i, myParam { string_pool::generate_random() });
std::cout << "Capacity: " << map.capacity() << "\n";
std::cout << "Total length: " << std::accumulate(
map.begin(), map.end(), 0ul, [](size_t acc, Map::value_type const& v) {
return acc + v.second.data.size();
}) << "\n";
return map;
}
#include <fstream>
#include <iostream>
int main() {
{
std::ofstream ofs("/tmp/all_params", std::ios::binary);
boost::archive::binary_oarchive oa(ofs);
auto data = generate_data(10ul<<19);
oa << data;
std::cout << "Serialized " << data.size() << " entries\n";
}
}
生成的/tmp/all_params
文件的md5sum与第一个版本的md5sum匹配:ac75521dc0dc65585368677c834613cb
,证明序列化后的数据其实是一样的。