Python 等同于给数值直方图

Python equivalent fo hive NumericHistogram

我有一个 python(更具体地说 -- pypy 兼容)代码。我必须在其中使用直方图,如果不完全相同,它应该非常相似 this java histogram implementation in Hive project. Numpy has a histogram implementation。 有谁知道这两者在使用上是否等效,或者可以通过选择适当的参数值来实现?我可以通过阅读代码找到它,尽管在这里检查是否有人已经知道这个。

答案很长,TLDR 以粗体显示

您可以只编译和 运行 两者,而不是尝试理论工艺和猜测代码的作用。如有疑问,只需 运行 即可。通过一些工作,您可以获得 NumericHistogram.java 链接,无需 maven 即可编译,只需使用 CLI javac 调用(只需删除对 hive 包和相关方法的引用) .

我只是在阵列上测试了两者 [0,1,...,98,99].

Java 版本 (java 10.0.2):

编辑:收到反馈(通过电子邮件)以包含 Java 代码。在这里(删除了文档字符串和一些注释,并且没有包括所有 public 方法):

/*                                                                                                                                                                                                          
 * Licensed to the Apache Software Foundation (ASF) under one                                                                                                                                               
 * or more contributor license agreements.  See the NOTICE file                                                                                                                                             
 * distributed with this work for additional information                                                                                                                                                    
 * regarding copyright ownership.  The ASF licenses this file                                                                                                                                               
 * to you under the Apache License, Version 2.0 (the                                                                                                                                                        
 * "License"); you may not use this file except in compliance                                                                                                                                               
 * with the License.  You may obtain a copy of the License at                                                                                                                                               
 *                                                                                                                                                                                                          
 *     http://www.apache.org/licenses/LICENSE-2.0                                                                                                                                                           
 *                                                                                                                                                                                                          
 * Unless required by applicable law or agreed to in writing, software                                                                                                                                      
 * distributed under the License is distributed on an "AS IS" BASIS,                                                                                                                                        
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.                                                                                                                                 
 * See the License for the specific language governing permissions and                                                                                                                                      
 * limitations under the License.                                                                                                                                                                           
 */

import java.util.ArrayList;
import java.util.List;
import java.util.Collections;
import java.util.Random;

public class NumericHistogram {
    static class Coord implements Comparable {
        double x;
        double y;

        public int compareTo(Object other) {
            return Double.compare(x, ((Coord) other).x);
        }
    };

    // Class variables                                                                                                                                                                                      
    private int nbins;
    private int nusedbins;
    private ArrayList<Coord> bins;
    private Random prng;

    public NumericHistogram() {
        nbins = 0;
        nusedbins = 0;
        bins = null;

        // init the RNG for breaking ties in histogram merging. A fixed seed is specified here                                                                                                              
        // to aid testing, but can be eliminated to use a time-based seed (which would                                                                                                                      
        // make the algorithm non-deterministic).                                                                                                                                                           
        prng = new Random(31183);
    }

    public void reset() {
        bins = null;
        nbins = nusedbins = 0;
    }

    public int getUsedBins() {
        return nusedbins;
    }

    public boolean isReady() {
        return nbins != 0;
    }

    public Coord getBin(int b) {
        return bins.get(b);
    }

    public void allocate(int num_bins) {
        nbins = num_bins;
        bins = new ArrayList<Coord>();
        nusedbins = 0;
    }

    public void add(double v) {
        int bin = 0;
        for(int l=0, r=nusedbins; l < r; ) {
            bin = (l+r)/2;
            if (bins.get(bin).x > v) {
                r = bin;
            } else {
                if (bins.get(bin).x < v) {
                    l = ++bin;
                } else {
                    break; // break loop on equal comparator                                                                                                                                                
                }
            }
        }
        if (bin < nusedbins && bins.get(bin).x == v) {
            bins.get(bin).y++;
        } else {
            Coord newBin = new Coord();
            newBin.x = v;
            newBin.y = 1;
            bins.add(bin, newBin);

            // Trim the bins down to the correct number of bins.                                                                                                                                            
            if (++nusedbins > nbins) {
                trim();
            }
        }

    }

    private void trim() {
        while(nusedbins > nbins) {
            // Find the closest pair of bins in terms of x coordinates. Break ties randomly.                                                                                                                
            double smallestdiff = bins.get(1).x - bins.get(0).x;
            int smallestdiffloc = 0, smallestdiffcount = 1;
            for(int i = 1; i < nusedbins-1; i++) {
                double diff = bins.get(i+1).x - bins.get(i).x;
                if(diff < smallestdiff)  {
                    smallestdiff = diff;
                    smallestdiffloc = i;
                    smallestdiffcount = 1;
                } else {
                    if(diff == smallestdiff && prng.nextDouble() <= (1.0/++smallestdiffcount) ) {
                        smallestdiffloc = i;
                    }
                }
            }

            double d = bins.get(smallestdiffloc).y + bins.get(smallestdiffloc+1).y;
            Coord smallestdiffbin = bins.get(smallestdiffloc);
            smallestdiffbin.x *= smallestdiffbin.y / d;
            smallestdiffbin.x += bins.get(smallestdiffloc+1).x / d * bins.get(smallestdiffloc+1).y;
            smallestdiffbin.y = d;
            // Shift the remaining bins left one position                                                                                                                                                   
            bins.remove(smallestdiffloc+1);
            nusedbins--;
        }
    }

    public int getNumBins() {
        return bins == null ? 0 : bins.size();
    }
}

我将这个 main 插入 NumericHistogram class(见上文):

public static void main(String[] args) {
    NumericHistogram hist = new NumericHistogram();
    hist.allocate(10);
    for (int i = 0; i < 100; i++) {
        hist.add(i);
    }

    ArrayList<Coord> bins = new ArrayList<Coord>();
    for (int i = 0; i < 10; i++) {
        bins.add(hist.getBin(i));
    }

    int index = 0;
    for (Coord bin : bins) {
        System.out.println(index + "th bin x: " + bin.x);
        System.out.println(index + "th bin y: " + bin.y);
        index++;
    }
}

这个输出:

Matthews-MacBook-Pro:Whosebug matt$ java NumericHistogram
0th bin x: 2.0
0th bin y: 5.0
1th bin x: 9.5
1th bin y: 10.0
2th bin x: 21.5
2th bin y: 14.0
3th bin x: 33.0
3th bin y: 9.0
4th bin x: 44.0
4th bin y: 13.0
5th bin x: 55.0
5th bin y: 9.0
6th bin x: 64.5
6th bin y: 10.0
7th bin x: 75.5
7th bin y: 12.0
8th bin x: 88.0
8th bin y: 13.0
9th bin x: 97.0
9th bin y: 5.0

Python版本:

numpy 版本有点不同。这是脚本:

import numpy as np

hist = np.histogram(np.arange(100)) # 10 is the default for num bins
print(hist)

这个输出:

(array([10, 10, 10, 10, 10, 10, 10, 10, 10, 10]), array([ 0. ,  9.9, 19.8, 29.7, 39.6, 49.5, 59.4, 69.3, 79.2, 89.1, 99. ]))

与 java 版本相比,我们确实需要压缩它们,您可以这样做:

y_values, x_values = hist
i = 0
for x_val, y_val in zip(x_values, y_values):
    print(str(i) + "th bin x: " + str(x_val))
    print(str(i) + "th bin y: " + str(y_val))
    i += 1

它输出:

0th bin x: 0.0
0th bin y: 10
1th bin x: 9.9
1th bin y: 10
2th bin x: 19.8
2th bin y: 10
3th bin x: 29.700000000000003
3th bin y: 10
4th bin x: 39.6
4th bin y: 10
5th bin x: 49.5
5th bin y: 10
6th bin x: 59.400000000000006
6th bin y: 10
7th bin x: 69.3
7th bin y: 10
8th bin x: 79.2
8th bin y: 10
9th bin x: 89.10000000000001
9th bin y: 10

汇总并匹配:

它们等价吗?不,它们不等价。 他们使用不同的分区方案为 bin 分配值。 Java 版本使用舍入规则将项目放入 "closest" 箱中,而 numpy 正在进行范围分组(即 0-9.9、9.9-19.8、...、89.1-100) .此外,它们生成的默认 bin 也不相同,这是有道理的,因为方案如此不同。

我可以让它们匹配吗?是的,但是如果你想要一个通用的实现,你必须弄清楚如何在 Python 领域中 准确地 生成随机数 Java 。.我尝试复制实现,并让它工作,但我无法获得相同的随机数。即使您使用 numpy 而不是将逻辑复制到 Python,您 仍然 必须能够生成 Java随机数,以使它们在一般情况下匹配。这个项目似乎相关,但它只是 Java 6 RNG,而不是 Java 的更高版本:https://github.com/MostAwesomeDude/java-random。冒着让这个巨大的答案变得更长的风险,这里是复制 Java 实现的 Python 代码:

""" Just a mindless copy for easy verification. Not good style or performant. """
import random
class Coord:
    def __init__(self, x, y):
        self.x = float(x)
        self.y = float(y)

    def __repr__(self): # debug
        return "Coord(" + str(self.x) + ", " + str(self.y) + ")"

    def __str__(self): # debug
        return "Coord(" + str(self.x) + ", " + str(self.y) + ")"

class Random:
    """ This class needs fixin. You'll have to do some work here to make it match your version of Java. """
    def __init__(self, seed):
        random.seed(seed)

    def nextDouble(self):
        return random.uniform(0, 1)

class NumericHistogram:
    def __init__(self):
        self.nbins = 0
        self.nusedbins = 0
        self.bins = None

        self.prng = Random(31183) # This should behave the same as Java's RNG for your Java version.                                                                                                        

    def allocate(self, num_bins):
        self.nbins = num_bins
        self.bins = []
        self.nusedbins = 0

    def add(self, v):
        bin = 0

        l = 0
        r = self.nusedbins
        while(l < r):
            bin = (l+r)//2
            if self.bins[bin].x > v:
                r = bin
            else:
                if self.bins[bin].x < v:
                    l = bin + 1; bin += 1
                else:
                    break

        if bin < self.nusedbins and self.bins[bin].x == v:
            self.bins[bin].y += 1
        else:
            newBin = Coord(x=v, y=1)
            if bin == len(self.bins):
                self.bins.append(newBin)
            else:
                self.bins[bin] == newBin

            self.nusedbins += 1
            if (self.nusedbins > self.nbins):
                self.trim()
    def trim(self):
        while self.nusedbins > self.nbins:
            smallestdiff = self.bins[1].x - self.bins[0].x
            smallestdiffloc = 0
            smallestdiffcount = 1
            for i in range(1, self.nusedbins-1):
                diff = self.bins[i+1].x - self.bins[i].x
                if diff < smallestdiff:
                    smallestdiff = diff
                    smallestdiffloc = i
                    smallestdiffcount = 1
                else:
                    smallestdiffcount += 1
                    if diff == smallestdiff and self.prng.nextDouble() <= (1.0/smallestdiffcount):
                        smallestdiffloc = i

            d = self.bins[smallestdiffloc].y + self.bins[smallestdiffloc+1].y
            smallestdiffbin = self.bins[smallestdiffloc]
            smallestdiffbin.x *= smallestdiffbin.y / d
            smallestdiffbin.x += self.bins[smallestdiffloc+1].x / d * self.bins[smallestdiffloc+1].y
            smallestdiffbin.y = d
            self.bins.pop(smallestdiffloc+1)
            self.nusedbins -= 1

和 "main":

hist = NumericHistogram()
hist.allocate(10)
for i in range(100):
    hist.add(i)

for ind, bin in enumerate(hist.bins):
    print(str(ind) + "th bin x: " + str(bin.x))
    print(str(ind) + "th bin y: " + str(bin.y))

这个输出:

0th bin x: 4.0
0th bin y: 9.0
1th bin x: 13.0
1th bin y: 9.0
2th bin x: 24.0
2th bin y: 13.0
3th bin x: 35.0
3th bin y: 9.0
4th bin x: 46.5
4th bin y: 14.0
5th bin x: 57.5
5th bin y: 8.0
6th bin x: 66.0
6th bin y: 9.0
7th bin x: 76.49999999999999
7th bin y: 12.0
8th bin x: 88.99999999999999
8th bin y: 13.0
9th bin x: 97.5
9th bin y: 4.0

所以有点接近,但没有香蕉。区别在于 RNG(据我所知)。我不太了解 Java Random 或一般的 RNG:所以最好只 post 另一个 问题在这里关于如何生成随机数

HTH,可以让您朝着正确的方向开始。