在 Julia 中使用预分配数组的函数使用自动微分

Using automatic differentiation on a function that makes use of a preallocated array in Julia

我的长标题几乎涵盖了它。

在下面的人为示例中,我设法找出了更大的问题。我无法弄清楚问题到底出在哪里,尽管我想它与预分配数组的类型有关?

using ForwardDiff

function test()

    A = zeros(1_000_000)

    function objective(A, value)
        for i=1:1_000_000
            A[i] = value[1]
        end

        return sum(A)
    end

    helper_objective = v -> objective(A, v)

    ForwardDiff.gradient(helper_objective, [1.0])

end

错误如下:

ERROR: MethodError: no method matching Float64(::ForwardDiff.Dual{ForwardDiff.Tag{getfield(Main, Symbol("##69#71")){Array{Float64,1},getfield(Main, Symbol("#objective#70")){Array{Float64,1}}},Float64},Float64,1})

在我自己的问题中(这里没有描述)我有一个函数需要使用 Optim 优化,它提供了自动微分,这个函数使用了一个大矩阵,我想按顺序预分配加快我的代码。非常感谢。

如果您查看 http://www.juliadiff.org/ForwardDiff.jl/latest/user/limitations.html,您会发现:

The target function must be written generically enough to accept numbers of type T<:Real as input (or arrays of these numbers) (...) This also means that any storage assigned used within the function must be generic as well.

以此处为例https://github.com/JuliaDiff/ForwardDiff.jl/issues/136#issuecomment-237941790

这意味着您可以这样做:

function test()
    function objective(value)
        for i=1:1_000_000
            A[i] = value[1]
        end
        return sum(A)
    end
    A = zeros(ForwardDiff.Dual{ForwardDiff.Tag{typeof(objective), Float64},Float64,1}, 1_000_000)
    ForwardDiff.gradient(objective, [1.0])
end

但我认为这不会为您节省很多分配,因为它的类型不稳定。

你可以做的是将 objectiveA 包装在一个模块中,如下所示:

using ForwardDiff

module Obj

using ForwardDiff

function objective(value)
    for i=1:1_000_000
        A[i] = value[1]
    end
    return sum(A)
end
const A = zeros(ForwardDiff.Dual{ForwardDiff.Tag{typeof(objective), Float64},Float64,1}, 1_000_000)

end

现在这个:

ForwardDiff.gradient(Obj.objective, [1.0])

应该很快。

编辑

这也有效(虽然它的类型不稳定,但在一个问题较少的地方):

function test()::Vector{Float64}
    function objective(A, value)
        for i=1:1_000_000
            A[i] = value[1]
        end

        return sum(A)
    end
    helper_objective = v -> objective(A, v)
    A = Vector{ForwardDiff.Dual{ForwardDiff.Tag{typeof(helper_objective), Float64},Float64,1}}(undef, 1_000_000)
    ForwardDiff.gradient(helper_objective, [1.0])
end