在分类列上过滤 Dask Dataframe?

Filter Dask Dataframe on categorical column?

假设我有一个很大的水果数据框。我有数千行,但只有大约 30 个不同的水果名称,所以我将该列作为一个类别:

df['fruit_name'] = df.fruit_name.astype('category')

现在这是一个类别,我可以不再过滤它吗?例如,

df_kiwi = df[df['fruit_name'] == 'kiwi']

将return TypeError("invalid type comparison")

如果我尝试创建一个 "dummy" 数据框并对其进行合并,我会得到一个 ValueError:"You are trying to merge on int8 and category columns..."

df_dummy = pd.DataFrame(data={'fruit_name': 'kiwi'}, index=range(1))
df_dummy['fruit_name'] = df_dummy.fruit_name.astype('category')

df_new = df.merge(df_dummy, how="inner", on="fruit_name")

我是否丢失了分类列上的某些合并和筛选功能,或者我只是做错了(我对 dask 和 pandas 仍然非常陌生)。谢谢!

这里有一个例子可以很好地展示它:

In [1]: import dask

In [2]: df = dask.datasets.timeseries()

In [3]: df.head()
Out[3]: 
                       id      name         x         y
timestamp                                              
2000-01-01 00:00:00   978    Hannah  0.194721  0.518782
2000-01-01 00:00:01   973   Michael -0.894162 -0.454409
2000-01-01 00:00:02  1043       Bob  0.829046 -0.585921
2000-01-01 00:00:03  1027     Edith -0.109735  0.563914
2000-01-01 00:00:04   970  Patricia -0.621248 -0.655324

In [4]: df['name'] = df.name.astype('category')

In [5]: df[df.name == 'Alice'].head()
Out[5]: 
                       id   name         x         y
timestamp                                           
2000-01-01 00:00:23   997  Alice -0.662165 -0.260169
2000-01-01 00:00:58  1012  Alice -0.840159 -0.036770
2000-01-01 00:01:23   961  Alice  0.831663  0.022570
2000-01-01 00:01:27   987  Alice -0.874289 -0.358708
2000-01-01 00:02:09   984  Alice  0.445238 -0.658470

我建议构建一个minimal failing example