模拟非矩形数组
Emulating non-rectangular arrays
通常您希望数组的性能优于链表,但不符合矩形数组的要求。
作为一个例子,考虑一个六边形网格,这里显示了单元格 (3, 3) 的 1 距离邻居以中灰色显示,2 距离邻居以浅灰色显示。
假设我们想要一个数组,对于每个单元格,该数组包含该单元格的每个 1 和 2 距离邻居的索引。一个小问题是单元格具有不同数量的 X 距离邻居——网格边界上的单元格比靠近网格中心的单元格具有更少的邻居。
(出于性能原因,我们需要一个相邻索引数组 --- 而不是从像元坐标到相邻索引的函数。)
我们可以通过跟踪每个单元格有多少邻居来解决这个问题。假设你有一个数组
neighbors2
大小 R x C x N x 2
,其中 R
是网格行数,C
是列数,N
是 2 距离邻居的最大数量网格中的任何单元格。
然后,通过保留一个大小为 R x C
的附加数组 n_neighbors2
,我们可以跟踪 neighbors2
中的哪些索引已填充,哪些只是零填充。例如,要检索单元格 (2, 5) 的 2 距离邻居,我们只需按如下方式索引到数组中:
someNeigh = neighbors2[2, 5, 0..n_neighbors2[2, 5], ..]
someNeigh
将是一个 n_neighbors2[2, 5] x 2
索引数组(或视图),其中 someNeigh[0, 0]
产生第一个邻居的行,someNeigh[0, 1]
产生第一个邻居的列第一个邻居等等。
请注意
位置的元素
neighbors2[2, 5, n_neighbors2[2, 5]+1.., ..]
无关; space 只是填充以保持矩阵矩形。
假设我们有一个函数来查找任何单元格的 d 距离邻居:
import Data.Bits (shift)
rows, cols = (7, 7)
type Cell = (Int, Int)
generateNeighs :: Int -> Cell -> [Cell]
generateNeighs d cell1 = [ (row2, col2)
| row2 <- [0..rows-1]
, col2 <- [0..cols-1]
, hexDistance cell1 (row2, col2) == d]
hexDistance :: Cell -> Cell -> Int
hexDistance (r1, c1) (r2, c2) = shift (abs rd + abs (rd + cd) + abs cd) (-1)
where
rd = r1 - r2
cd = c1 - c2
我们如何创建上述数组 neighbors2
和 n_neighbors2
?假设我们事先知道 2 距离邻居的最大数量 N
。然后可以将 generateNeighs
修改为始终 return 相同大小的列表,因为我们可以用 (0, 0) 填充剩余的条目。在我看来,这留下了两个问题:
- 我们需要一个函数来填充
neighbors2
,它不是对每个单独的索引进行操作,而是对一个切片进行操作,在我们的例子中,它应该一次填充一个单元格。
n_neighbors2
应与 neighbors2
同时填充
欢迎使用 repa
或 accelerate
数组的解决方案。
这可以通过使用 permute 函数一次填充 1 个单元格的邻居来实现。
import Data.Bits (shift)
import Data.Array.Accelerate as A
import qualified Prelude as P
import Prelude hiding ((++), (==))
rows = 7
cols = 7
channels = 70
type Cell = (Int, Int)
(neighs, nNeighs) = fillNeighs
getNeighs :: Cell -> Acc (Array DIM1 Cell)
getNeighs (r, c) = A.take (nNeighs ! sh1) $ slice neighs sh2
where
sh1 = constant (Z :. r :. c)
sh2 = constant (Z :. r :. c :. All)
fillNeighs :: (Acc (Array DIM3 Cell), Acc (Array DIM2 Int))
fillNeighs = (neighs2, nNeighs2)
where
sh = constant (Z :. rows :. cols :. 18) :: Exp DIM3
neighZeros = fill sh (lift (0 :: Int, 0 :: Int)) :: Acc (Array DIM3 Cell)
-- nNeighZeros = fill (constant (Z :. rows :. cols)) 0 :: Acc (Array DIM2 Int)
(neighs2, nNeighs2li) = foldr inner (neighZeros, []) indices
nNeighs2 = use $ fromList (Z :. rows :. cols) nNeighs2li
-- Generate indices by varying column fastest. This assures that fromList, which fills
-- the array in row-major order, gets nNeighs in the correct order.
indices = foldr (\r acc -> foldr (\c acc2 -> (r, c):acc2 ) acc [0..cols-1]) [] [0..rows-1]
inner :: Cell
-> (Acc (Array DIM3 Cell), [Int])
-> (Acc (Array DIM3 Cell), [Int])
inner cell (neighs, nNeighs) = (newNeighs, n : nNeighs)
where
(newNeighs, n) = fillCell cell neighs
-- Given an cell and a 3D array to contain cell neighbors,
-- fill in the neighbors for the given cell
-- and return the number of neighbors filled in
fillCell :: Cell -> Acc (Array DIM3 Cell) -> (Acc (Array DIM3 Cell), Int)
fillCell (r, c) arr = (permute const arr indcomb neighs2arr, nNeighs)
where
(ra, ca) = (lift r, lift c) :: (Exp Int, Exp Int)
neighs2li = generateNeighs 2 (r, c)
nNeighs = P.length neighs2li
neighs2arr = use $ fromList (Z :. nNeighs) neighs2li
-- Traverse the 3rd dimension of the given cell
indcomb :: Exp DIM1 -> Exp DIM3
indcomb nsh = index3 ra ca (unindex1 nsh)
generateNeighs :: Int -> Cell -> [Cell]
generateNeighs d cell1 = [ (row2, col2)
| row2 <- [0..rows]
, col2 <- [0..cols]
, hexDistance cell1 (row2, col2) P.== d]
-- Manhattan distance between two cells in an hexagonal grid with an axial coordinate system
hexDistance :: Cell -> Cell -> Int
hexDistance (r1, c1) (r2, c2) = shift (abs rd + abs (rd + cd) + abs cd) (-1)
where
rd = r1 - r2
cd = c1 - c2
这是你向右倾斜 30 度的图片:
如您所见,您的阵列实际上是完美的矩形。
社区外围的索引很容易找到,即围绕所选中心单元格的六个直线部分,例如(假设n == 2
是图中外围距离中心(i,j) == (3,3)
的距离):
periphery n (i,j) =
-- 2 (3,3)
let
((i1,j1):ps1) = reverse . take (n+1) . iterate (\(i,j)->(i,j+1)) $ (i-n,j)
-- ( 1, 3)
((i2,j2):ps2) = reverse . take (n+1) . iterate (\(i,j)->(i+1,j)) $ (i1,j1)
-- ( 1, 5)
.....
ps6 = ....... $ (i5,j5)
in filter isValid (ps6 ++ ... ++ ps2 ++ ps1)
整个街区简直
neighborhood n (i,j) = (i,j) : concat [ periphery k (i,j) | k <- [1..n] ]
对于每个 cell/distance 组合,只需动态生成邻域索引并在 O(1) 时间内为每个索引对访问您的数组。
完整地写出@WillNess 的答案,并结合@leftroundabout 的建议将索引存储在一维向量中,我们得到:
import qualified Data.Array.Accelerate as A
import Data.Array.Accelerate (Acc, Array, DIM1, DIM2, DIM3, Z(..), (:.)(..), (!), fromList, use)
rows = 7
cols = 7
type Cell = (Int, Int)
(neighs, nNeighs) = generateNeighs
-- Return a vector of indices of cells at distance 'd' or less from the given cell
getNeighs :: Int -> Cell -> Acc (Array DIM1 Cell)
getNeighs d (r,c) = A.take n $ A.drop start neighs
where
start = nNeighs ! A.constant (Z :. r :. c :. 0)
n = nNeighs ! A.constant (Z :. r :. c :. d)
generateNeighs :: (Acc (Array DIM1 Cell), Acc (Array DIM3 Int))
generateNeighs = (neighsArr, nNeighsArr)
where
idxs = concat [[(r, c) | c <- [0..cols-1]] | r <- [0..rows-1]]
(neighsLi, nNeighsLi, n) = foldl inner ([], [], 0) idxs
neighsArr = use $ fromList (Z :. n) neighsLi
nNeighsArr = use $ fromList (Z :. rows :. cols :. 5) nNeighsLi
inner (neighs', nNeighs', n') idx = (neighs' ++ cellNeighs, nNeighs'', n'')
where
(cellNeighs, cellNNeighs) = neighborhood idx
n'' = n' + length cellNeighs
nNeighs'' = nNeighs' ++ n' : cellNNeighs
neighborhood :: Cell -> ([Cell], [Int])
neighborhood (r,c) = (neighs, nNeighs)
where
neighsO = [ periphery d (r,c) | d <- [1..4] ]
neighs = (r,c) : concat neighsO
nNeighs = tail $ scanl (+) 1 $ map length neighsO
periphery d (r,c) =
-- The set of d-distance neighbors form a hexagon shape. Traverse each of
-- the sides of this hexagon and gather up the cell indices.
let
ps1 = take d . iterate (\(r,c)->(r,c+1)) $ (r-d,c)
ps2 = take d . iterate (\(r,c)->(r+1,c)) $ (r-d,c+d)
ps3 = take d . iterate (\(r,c)->(r+1,c-1)) $ (r,c+d)
ps4 = take d . iterate (\(r,c)->(r,c-1)) $ (r+d,c)
ps5 = take d . iterate (\(r,c)->(r-1,c)) $ (r+d,c-d)
ps6 = take d . iterate (\(r,c)->(r-1,c+1)) $ (r,c-d)
in filter isValid (ps6 ++ ps5 ++ ps4 ++ ps3 ++ ps2 ++ ps1)
isValid :: Cell -> Bool
isValid (r, c)
| r < 0 || r >= rows = False
| c < 0 || c >= cols = False
| otherwise = True
通常您希望数组的性能优于链表,但不符合矩形数组的要求。
作为一个例子,考虑一个六边形网格,这里显示了单元格 (3, 3) 的 1 距离邻居以中灰色显示,2 距离邻居以浅灰色显示。
(出于性能原因,我们需要一个相邻索引数组 --- 而不是从像元坐标到相邻索引的函数。)
我们可以通过跟踪每个单元格有多少邻居来解决这个问题。假设你有一个数组
neighbors2
大小 R x C x N x 2
,其中 R
是网格行数,C
是列数,N
是 2 距离邻居的最大数量网格中的任何单元格。
然后,通过保留一个大小为 R x C
的附加数组 n_neighbors2
,我们可以跟踪 neighbors2
中的哪些索引已填充,哪些只是零填充。例如,要检索单元格 (2, 5) 的 2 距离邻居,我们只需按如下方式索引到数组中:
someNeigh = neighbors2[2, 5, 0..n_neighbors2[2, 5], ..]
someNeigh
将是一个 n_neighbors2[2, 5] x 2
索引数组(或视图),其中 someNeigh[0, 0]
产生第一个邻居的行,someNeigh[0, 1]
产生第一个邻居的列第一个邻居等等。
请注意
neighbors2[2, 5, n_neighbors2[2, 5]+1.., ..]
无关; space 只是填充以保持矩阵矩形。
假设我们有一个函数来查找任何单元格的 d 距离邻居:
import Data.Bits (shift)
rows, cols = (7, 7)
type Cell = (Int, Int)
generateNeighs :: Int -> Cell -> [Cell]
generateNeighs d cell1 = [ (row2, col2)
| row2 <- [0..rows-1]
, col2 <- [0..cols-1]
, hexDistance cell1 (row2, col2) == d]
hexDistance :: Cell -> Cell -> Int
hexDistance (r1, c1) (r2, c2) = shift (abs rd + abs (rd + cd) + abs cd) (-1)
where
rd = r1 - r2
cd = c1 - c2
我们如何创建上述数组 neighbors2
和 n_neighbors2
?假设我们事先知道 2 距离邻居的最大数量 N
。然后可以将 generateNeighs
修改为始终 return 相同大小的列表,因为我们可以用 (0, 0) 填充剩余的条目。在我看来,这留下了两个问题:
- 我们需要一个函数来填充
neighbors2
,它不是对每个单独的索引进行操作,而是对一个切片进行操作,在我们的例子中,它应该一次填充一个单元格。 n_neighbors2
应与neighbors2
同时填充
欢迎使用 repa
或 accelerate
数组的解决方案。
这可以通过使用 permute 函数一次填充 1 个单元格的邻居来实现。
import Data.Bits (shift)
import Data.Array.Accelerate as A
import qualified Prelude as P
import Prelude hiding ((++), (==))
rows = 7
cols = 7
channels = 70
type Cell = (Int, Int)
(neighs, nNeighs) = fillNeighs
getNeighs :: Cell -> Acc (Array DIM1 Cell)
getNeighs (r, c) = A.take (nNeighs ! sh1) $ slice neighs sh2
where
sh1 = constant (Z :. r :. c)
sh2 = constant (Z :. r :. c :. All)
fillNeighs :: (Acc (Array DIM3 Cell), Acc (Array DIM2 Int))
fillNeighs = (neighs2, nNeighs2)
where
sh = constant (Z :. rows :. cols :. 18) :: Exp DIM3
neighZeros = fill sh (lift (0 :: Int, 0 :: Int)) :: Acc (Array DIM3 Cell)
-- nNeighZeros = fill (constant (Z :. rows :. cols)) 0 :: Acc (Array DIM2 Int)
(neighs2, nNeighs2li) = foldr inner (neighZeros, []) indices
nNeighs2 = use $ fromList (Z :. rows :. cols) nNeighs2li
-- Generate indices by varying column fastest. This assures that fromList, which fills
-- the array in row-major order, gets nNeighs in the correct order.
indices = foldr (\r acc -> foldr (\c acc2 -> (r, c):acc2 ) acc [0..cols-1]) [] [0..rows-1]
inner :: Cell
-> (Acc (Array DIM3 Cell), [Int])
-> (Acc (Array DIM3 Cell), [Int])
inner cell (neighs, nNeighs) = (newNeighs, n : nNeighs)
where
(newNeighs, n) = fillCell cell neighs
-- Given an cell and a 3D array to contain cell neighbors,
-- fill in the neighbors for the given cell
-- and return the number of neighbors filled in
fillCell :: Cell -> Acc (Array DIM3 Cell) -> (Acc (Array DIM3 Cell), Int)
fillCell (r, c) arr = (permute const arr indcomb neighs2arr, nNeighs)
where
(ra, ca) = (lift r, lift c) :: (Exp Int, Exp Int)
neighs2li = generateNeighs 2 (r, c)
nNeighs = P.length neighs2li
neighs2arr = use $ fromList (Z :. nNeighs) neighs2li
-- Traverse the 3rd dimension of the given cell
indcomb :: Exp DIM1 -> Exp DIM3
indcomb nsh = index3 ra ca (unindex1 nsh)
generateNeighs :: Int -> Cell -> [Cell]
generateNeighs d cell1 = [ (row2, col2)
| row2 <- [0..rows]
, col2 <- [0..cols]
, hexDistance cell1 (row2, col2) P.== d]
-- Manhattan distance between two cells in an hexagonal grid with an axial coordinate system
hexDistance :: Cell -> Cell -> Int
hexDistance (r1, c1) (r2, c2) = shift (abs rd + abs (rd + cd) + abs cd) (-1)
where
rd = r1 - r2
cd = c1 - c2
这是你向右倾斜 30 度的图片:
如您所见,您的阵列实际上是完美的矩形。
社区外围的索引很容易找到,即围绕所选中心单元格的六个直线部分,例如(假设n == 2
是图中外围距离中心(i,j) == (3,3)
的距离):
periphery n (i,j) =
-- 2 (3,3)
let
((i1,j1):ps1) = reverse . take (n+1) . iterate (\(i,j)->(i,j+1)) $ (i-n,j)
-- ( 1, 3)
((i2,j2):ps2) = reverse . take (n+1) . iterate (\(i,j)->(i+1,j)) $ (i1,j1)
-- ( 1, 5)
.....
ps6 = ....... $ (i5,j5)
in filter isValid (ps6 ++ ... ++ ps2 ++ ps1)
整个街区简直
neighborhood n (i,j) = (i,j) : concat [ periphery k (i,j) | k <- [1..n] ]
对于每个 cell/distance 组合,只需动态生成邻域索引并在 O(1) 时间内为每个索引对访问您的数组。
完整地写出@WillNess 的答案,并结合@leftroundabout 的建议将索引存储在一维向量中,我们得到:
import qualified Data.Array.Accelerate as A
import Data.Array.Accelerate (Acc, Array, DIM1, DIM2, DIM3, Z(..), (:.)(..), (!), fromList, use)
rows = 7
cols = 7
type Cell = (Int, Int)
(neighs, nNeighs) = generateNeighs
-- Return a vector of indices of cells at distance 'd' or less from the given cell
getNeighs :: Int -> Cell -> Acc (Array DIM1 Cell)
getNeighs d (r,c) = A.take n $ A.drop start neighs
where
start = nNeighs ! A.constant (Z :. r :. c :. 0)
n = nNeighs ! A.constant (Z :. r :. c :. d)
generateNeighs :: (Acc (Array DIM1 Cell), Acc (Array DIM3 Int))
generateNeighs = (neighsArr, nNeighsArr)
where
idxs = concat [[(r, c) | c <- [0..cols-1]] | r <- [0..rows-1]]
(neighsLi, nNeighsLi, n) = foldl inner ([], [], 0) idxs
neighsArr = use $ fromList (Z :. n) neighsLi
nNeighsArr = use $ fromList (Z :. rows :. cols :. 5) nNeighsLi
inner (neighs', nNeighs', n') idx = (neighs' ++ cellNeighs, nNeighs'', n'')
where
(cellNeighs, cellNNeighs) = neighborhood idx
n'' = n' + length cellNeighs
nNeighs'' = nNeighs' ++ n' : cellNNeighs
neighborhood :: Cell -> ([Cell], [Int])
neighborhood (r,c) = (neighs, nNeighs)
where
neighsO = [ periphery d (r,c) | d <- [1..4] ]
neighs = (r,c) : concat neighsO
nNeighs = tail $ scanl (+) 1 $ map length neighsO
periphery d (r,c) =
-- The set of d-distance neighbors form a hexagon shape. Traverse each of
-- the sides of this hexagon and gather up the cell indices.
let
ps1 = take d . iterate (\(r,c)->(r,c+1)) $ (r-d,c)
ps2 = take d . iterate (\(r,c)->(r+1,c)) $ (r-d,c+d)
ps3 = take d . iterate (\(r,c)->(r+1,c-1)) $ (r,c+d)
ps4 = take d . iterate (\(r,c)->(r,c-1)) $ (r+d,c)
ps5 = take d . iterate (\(r,c)->(r-1,c)) $ (r+d,c-d)
ps6 = take d . iterate (\(r,c)->(r-1,c+1)) $ (r,c-d)
in filter isValid (ps6 ++ ps5 ++ ps4 ++ ps3 ++ ps2 ++ ps1)
isValid :: Cell -> Bool
isValid (r, c)
| r < 0 || r >= rows = False
| c < 0 || c >= cols = False
| otherwise = True