(p ∧ q) ∧ (p ⇒ ¬q) 证明矛盾?
(p ∧ q) ∧ (p ⇒ ¬q) prove contradiction?
所以在这之后我已经走到了死胡同,我尝试在这之后做 de Morgan 规则,但在那之后面临死胡同。
这个我试过了
(p ∧ q) ∧ (¬p ∨ ¬q)
(p ∧ q) ∧ ¬(p ∧ q)
设p∧q=X,则
(p ∧ q) ∧ ¬(p ∧ q) 可以写成 X ∧ ¬ X 由补律矛盾
事实上,您的第二个表达式已经是您需要的形式:它表示 A ∧ ¬A
,这在定义上是矛盾的。
(p ∧ q) ∧ (¬p ∨ ¬q)
由De Morgan's law变为:
(p ∧ q) ∧ -(p ∧ q)
因此矛盾:(p ∧ q) AND NOT (p ∧ q)
例如:
p = "I went to the beach"
q = "I played football"
逻辑陈述如下:
I went to the beach and played football, and I did not go to the beach and I did not play football
矛盾
所以在这之后我已经走到了死胡同,我尝试在这之后做 de Morgan 规则,但在那之后面临死胡同。 这个我试过了
(p ∧ q) ∧ (¬p ∨ ¬q)
(p ∧ q) ∧ ¬(p ∧ q)
设p∧q=X,则
(p ∧ q) ∧ ¬(p ∧ q) 可以写成 X ∧ ¬ X 由补律矛盾
事实上,您的第二个表达式已经是您需要的形式:它表示 A ∧ ¬A
,这在定义上是矛盾的。
(p ∧ q) ∧ (¬p ∨ ¬q)
由De Morgan's law变为:
(p ∧ q) ∧ -(p ∧ q)
因此矛盾:(p ∧ q) AND NOT (p ∧ q)
例如:
p = "I went to the beach"
q = "I played football"
逻辑陈述如下:
I went to the beach and played football, and I did not go to the beach and I did not play football
矛盾