(p ∧ q) ∧ (p ⇒ ¬q) 证明矛盾?

(p ∧ q) ∧ (p ⇒ ¬q) prove contradiction?

所以在这之后我已经走到了死胡同,我尝试在这之后做 de Morgan 规则,但在那之后面临死胡同。 这个我试过了

(p ∧ q) ∧ (¬p ∨ ¬q)
(p ∧ q) ∧ ¬(p ∧ q)

设p∧q=X,则

(p ∧ q) ∧ ¬(p ∧ q) 可以写成 X ∧ ¬ X 由补律矛盾

事实上,您的第二个表达式已经是您需要的形式:它表示 A ∧ ¬A,这在定义上是矛盾的。

(p ∧ q) ∧ (¬p ∨ ¬q)

De Morgan's law变为:

(p ∧ q) ∧ -(p ∧ q)

因此矛盾:(p ∧ q) AND NOT (p ∧ q)

例如: p = "I went to the beach" q = "I played football"

逻辑陈述如下:

I went to the beach and played football, and I did not go to the beach and I did not play football

矛盾