在 Julia 中生成加权和有向网络形式的邻接矩阵

Generating a weighted and directed network form adjacency matrix in Julia

我想在 Julia (v0.7) 中从邻接矩阵生成加权和有向网络。

到目前为止我已经尝试过:

using LightGraphs
using SimpleWeightedGraphs

A = rand(100, 100)
G = Graph(A)

但我收到错误:

ERROR: ArgumentError: Adjacency / distance matrices must be symmetric
Stacktrace:
 [1] SimpleGraph{Int64}(::Array{Float64,2}) at /home/user/.julia/packages/LightGraphs/PPsyP/src/SimpleGraphs/simplegraph.jl:78
 [2] SimpleGraph(::Array{Float64,2}) at /home/user/.julia/packages/LightGraphs/PPsyP/src/SimpleGraphs/simplegraph.jl:72
 [3] top-level scope at none:0

到目前为止,我只看到 github (https://github.com/JuliaGraphs/SimpleWeightedGraphs.jl) 页面上的示例,该示例从边缘列表生成加权图。但是,如果我可以直接从邻接矩阵生成图形,我会更喜欢。

绝不是 Julia 图专家,但我想你想要的是

julia> A = rand(100,100);

julia> G = SimpleWeightedDiGraph(A)
{100, 10000} directed simple Int64 graph with Float64 weights

Graph(a::AbstractMatrix) 是无向(单位加权)图的构造函数:

julia> A = A+transpose(A); # making A symmetric

julia> G = Graph(A)
{100, 5050} undirected simple Int64 graph

julia> weights(G)
100 × 100 default distance matrix (value = 1)

根据 crstnbr 的回答,Graph 是一个未加权的无向矩阵,因此邻接矩阵理想情况下与 [0, 1] 中的值对称。
Graph 构造函数提供任何对称矩阵,为每个 非零 元素创建边:

A = rand(3,3);
Graph(A+A');
println.(edges(G));
 Edge 1 => 1
 Edge 1 => 2
 Edge 1 => 3
 Edge 2 => 2
 Edge 2 => 3
 Edge 3 => 3

SimpleWeightedDiGraph 有几个可以采用密集或 SparseMatrixCSC 邻接矩阵的构造函数:

SimpleWeightedDiGraph(rand(4,4))
 {4, 16} directed simple Int64 graph with Float64 weights

SimpleWeightedDiGraph(rand([0,1], 3, 3))
 {3, 5} directed simple Int64 graph with Int64 weights

using SparseArrays
SimpleWeightedDiGraph( sprand(3, 3, 0.5) )
 {3, 5} directed simple Int64 graph with Float64 weights

您 运行 遇到的第一个问题是您的随机邻接矩阵不是对称的,而这是无向图所必需的。您想创建一个有向图。

其次,如果你想要一个加权图,你会想要使用 SimpleWeightedGraphs.jl 包,这意味着你可以简单地做

julia> using LightGraphs, SimpleWeightedGraphs

julia> a = rand(100,100);

julia> g = SimpleWeightedDiGraph(a)
{100, 10000} directed simple Int64 graph with Float64 weights

但请注意,这是创建随机加权图的一种非常糟糕的方法,因为 rand 函数几乎可以保证这将是一个完整的图。更好的是使用 sprand:

julia> using SparseArrays

julia> a = sprand(100, 100, 0.2);

julia> g = SimpleWeightedDiGraph(a)
{100, 2048} directed simple Int64 graph with Float64 weights