如何将以光栅格式呈现的标签数据加载到 Keras/Tensorflow
how to load label data presented in raster format into Keras/Tensorflow
我想使用 CNN 网络将 2 个对象(二进制:“0:对象不存在,1:对象存在”)分割成形状,但我遇到了数据问题。训练数据是 150 张图像,采用 "jpg" 格式,地面实况(标签数据)也是 0 和 1 的 "png" 栅格的 150 张图像(产生黑白图像)。
现在的问题是如何在 Keras/Tensorflow 中加载这种训练图像和标签图像的混合体,如果在 Python 中有一个虚拟示例 and/or 演示如何做到这一点, 将不胜感激
您可以使用 ImageDataGenerator
class and its flow_from_directory()
方法定义一个用于读取输入图像的生成器和另一个用于读取标签的生成器,然后将这两个生成器组合成一个生成器。只要确保输入和标签图像的目录结构和文件名(顺序)相同即可:
data_image_gen = ImageDataGenerator(...)
data_label_gen = ImageDataGenerator(...)
image_gen = data_image_gen.flow_from_directory(image_directory,
# no need to return labels
class_mode=None,
# don't shuffle to have the same order as labels
shuffle=False)
image_gen = data_image_gen.flow_from_directory(label_directory,
color_mode='grayscale',
# no need to return labels
class_mode=None,
# don't shuffle to have the same order as images
shuffle=False)
def final_gen(image_gen, label_gen):
for data, labels in zip(image_gen, label_gen):
# divide labels by 255 to make them like masks i.e. 0 and 1
labels /= 255.
# remove the last axis, i.e. (batch_size, n_rows, n_cols, 1) --> (batch_size, n_rows, n_cols)
labels = np.squeeze(labels, axis=-1)
yield data, labels
# ... define your model
# fit the model
model.fit_generator(final_gen(image_gen, label_gen), ...)
我想使用 CNN 网络将 2 个对象(二进制:“0:对象不存在,1:对象存在”)分割成形状,但我遇到了数据问题。训练数据是 150 张图像,采用 "jpg" 格式,地面实况(标签数据)也是 0 和 1 的 "png" 栅格的 150 张图像(产生黑白图像)。
现在的问题是如何在 Keras/Tensorflow 中加载这种训练图像和标签图像的混合体,如果在 Python 中有一个虚拟示例 and/or 演示如何做到这一点, 将不胜感激
您可以使用 ImageDataGenerator
class and its flow_from_directory()
方法定义一个用于读取输入图像的生成器和另一个用于读取标签的生成器,然后将这两个生成器组合成一个生成器。只要确保输入和标签图像的目录结构和文件名(顺序)相同即可:
data_image_gen = ImageDataGenerator(...)
data_label_gen = ImageDataGenerator(...)
image_gen = data_image_gen.flow_from_directory(image_directory,
# no need to return labels
class_mode=None,
# don't shuffle to have the same order as labels
shuffle=False)
image_gen = data_image_gen.flow_from_directory(label_directory,
color_mode='grayscale',
# no need to return labels
class_mode=None,
# don't shuffle to have the same order as images
shuffle=False)
def final_gen(image_gen, label_gen):
for data, labels in zip(image_gen, label_gen):
# divide labels by 255 to make them like masks i.e. 0 and 1
labels /= 255.
# remove the last axis, i.e. (batch_size, n_rows, n_cols, 1) --> (batch_size, n_rows, n_cols)
labels = np.squeeze(labels, axis=-1)
yield data, labels
# ... define your model
# fit the model
model.fit_generator(final_gen(image_gen, label_gen), ...)