Dask read_csv-- 在`pd.read_csv`/`pd.read_table` 中发现不匹配的数据类型

Dask read_csv-- Mismatched dtypes found in `pd.read_csv`/`pd.read_table`

我正在尝试使用 dask 读取 csv 文件,它给了我一个如下所示的错误。但问题是我希望我的 ARTICLE_IDobject(string)。谁能帮我成功读取数据?

回溯如下:

ValueError: Mismatched dtypes found in `pd.read_csv`/`pd.read_table`.

+------------+--------+----------+

| Column     | Found  | Expected |

+------------+--------+----------+

| ARTICLE_ID | object | int64    |

+------------+--------+----------+

The following columns also raised exceptions on conversion:

ARTICLE_ID:


ValueError("invalid literal for int() with base 10: ' July 2007 and 31 March 2008. Diagnostic practices of the medical practitioners for establishing the diagnosis of different types of EPTB were studied. Results: For the diagnosi\\'",)

Usually this is due to dask's dtype inference failing, and
*may* be fixed by specifying dtypes manually by adding:

dtype={'ARTICLE_ID': 'object'}

to the call to `read_csv`/`read_table`.

该消息建议您将呼叫更改为

df = dd.read_csv('mylocation.csv', ...)

df = dd.read_csv('mylocation.csv', ..., dtype={'ARTICLE_ID': 'object'})

您应该在哪里将文件位置和任何其他参数更改为您之前使用的内容。如果这仍然不起作用,请更新您的问题。

您可以在 read_csv 方法中使用 sample 参数并为其分配一个整数以指示在确定数据类型时要使用的字节数。例如,我必须给它 25000000 才能正确推断出形状为 (171907, 161) 的数据类型。

df = dd.read_csv("game_logs.csv", sample=25000000)

https://docs.dask.org/en/latest/dataframe-api.html#dask.dataframe.read_csv