在 Python 中创建快速 RGB 查找表
Creating fast RGB look up tables in Python
我有一个函数,我将调用 'rgb2something' 将 RGB 数据 [1x1x3] 转换为单个值(概率),循环遍历输入 RGB 数据中的每个像素结果相当慢。
我尝试了以下方法来加快转换速度。生成 LUT(查找 table):
import numpy as np
levels = 256
levels2 = levels**2
lut = [0] * (levels ** 3)
levels_range = range(0, levels)
for r in levels_range:
for g in levels_range:
for b in levels_range:
lut[r + (g * levels) + (b * levels2)] = rgb2something(r, g, b)
并将RGB转换为变换后的概率图像:
result = np.take(lut, r_channel + (g_channel * 256) + (b_channel * 65536))
但是生成LUT和计算结果仍然很慢。在 2 维中它相当快,但在 3 维(r、g 和 b)中它很慢。我怎样才能提高它的性能?
编辑
rgb2something(r, g, b)
看起来像这样:
def rgb2something(r, g, b):
y = np.array([[r, g, b]])
y_mean = np.mean(y, axis=0)
y_centered = y - y_mean
y_cov = y_centered.T.dot(y_centered) / len(y_centered)
m = len(Consts.x)
n = len(y)
q = m + n
pool_cov = (m / q * x_cov) + (n / q * y_cov)
inv_pool_cov = np.linalg.inv(pool_cov)
g = Consts.x_mean - y_mean
mah = g.T.dot(inv_pool_cov).dot(g) ** 0.5
return mah
编辑 2:
我正在尝试实现的完整工作代码示例,我正在使用 OpenCV,因此欢迎使用任何 OpenCV 方法,例如 Apply LUT,C/C++ 方法也是如此:
import matplotlib.pyplot as plt
import numpy as np
import cv2
class Model:
x = np.array([
[6, 5, 2],
[2, 5, 7],
[6, 3, 1]
])
x_mean = np.mean(x, axis=0)
x_centered = x - x_mean
x_covariance = x_centered.T.dot(x_centered) / len(x_centered)
m = len(x)
n = 1 # Only ever comparing to a single pixel
q = m + n
pooled_covariance = (m / q * x_covariance) # + (n / q * y_cov) -< Always 0 for a single point
inverse_pooled_covariance = np.linalg.inv(pooled_covariance)
def rgb2something(r, g, b):
#Calculates Mahalanobis Distance between pixel and model X
y = np.array([[r, g, b]])
y_mean = np.mean(y, axis=0)
g = Model.x_mean - y_mean
mah = g.T.dot(Model.inverse_pooled_covariance).dot(g) ** 0.5
return mah
def generate_lut():
levels = 256
levels2 = levels**2
lut = [0] * (levels ** 3)
levels_range = range(0, levels)
for r in levels_range:
for g in levels_range:
for b in levels_range:
lut[r + (g * levels) + (b * levels2)] = rgb2something(r, g, b)
return lut
def calculate_distance(lut, input_image):
return np.take(lut, input_image[:, :, 0] + (input_image[:, :, 1] * 256) + (input_image[:, :, 2] * 65536))
lut = generate_lut()
rgb = np.random.randint(255, size=(1080, 1920, 3), dtype=np.uint8)
result = calculate_distance(lut, rgb)
cv2.imshow("Example", rgb)
cv2.imshow("Result", result)
cv2.waitKey(0)
首先,请在您的 rgb2something
函数中添加 Consts
的内容,因为这将有助于我们了解该函数的具体作用。
加速此操作的最佳方法是向量化操作。
1) 无缓存
您不需要为此操作构建查找table。如果您有一个应用于每个 (r, g, b)
向量的函数,您可以使用 np.apply_along_axis
将它简单地应用于图像中的每个向量。在下面的示例中,我假设 rgb2something
的简单定义作为占位符 - 这个函数当然可以替换为您的定义。
def rgb2something(vector):
return sum(vector)
image = np.random.randint(0, 256, size=(100, 100, 3), dtype=np.uint8)
transform = np.apply_along_axis(rgb2something, -1, image)
这采用 image
数组,并将函数 rgb2something
应用于沿轴 -1
(这是最后一个通道轴)的每个一维切片。
2) 延迟填充查找 table
虽然缓存不是必需的,但在特定的用例中它可能会让您受益匪浅。也许您想对数千张图像执行这种 rgb2something
的像素级操作,并且您怀疑许多像素值会在图像中重复。在这种情况下,构建查找 table 可以显着提高性能。我建议懒惰地填充 table(我建议假设您的数据集跨越有些相似的图像 - 具有相似的对象,纹理等,这意味着它们总共只跨越相对较小的子集整个 2^24 次搜索 space)。如果您觉得它们跨越了一个相对较大的子集,您可以预先构建整个查找 table(请参阅下一节)。
lut = [-1] * (256 ** 3)
def actual_rgb2something(vector):
return sum(vector)
def rgb2something(vector):
value = lut[vector[0] + vector[1] * 256 + vector[2] * 65536]
if value == -1:
value = actual_rgb2something(vector)
lut[vector[0] + vector[1] * 256 + vector[2] * 65536] = value
return value
然后您可以像以前一样变换每个图像:
image = np.random.randint(0, 256, size=(100, 100, 3), dtype=np.uint8)
transform = np.apply_along_axis(rgb2something, -1, image)
3) 预计算缓存
也许您的图像足够多样化,可以涵盖整个搜索范围的一大组,并且整个缓存的构建成本可以通过减少查找成本来摊销。
from itertools import product
lut = [-1] * (256 ** 3)
def actual_rgb2something(vector):
return sum(vector)
def fill(vector):
value = actual_rgb2something(vector)
lut[vector[0] + vector[1] * 256 + vector[2] * 65536] = value
# Fill the table
total = list(product(range(256), repeat=3))
np.apply_along_axis(fill, arr=total, axis=1)
现在您无需再次计算这些值,只需从 table:
中查找它们即可
def rgb2something(vector):
return lut[vector[0] + vector[1] * 256 + vector[2] * 65536]
转换图像当然和以前一样:
image = np.random.randint(0, 256, size=(100, 100, 3), dtype=np.uint8)
transform = np.apply_along_axis(rgb2something, -1, image)
更新:添加了 blas 优化
有几个直接且非常有效的优化:
(1) 向量化,向量化!基本上向量化此代码中的所有内容并不难。见下文。
(2) 使用正确的查找,即花哨的索引,而不是 np.take
(3) 使用 Cholesky 分解。使用 blas dtrmm
我们可以利用它的三角形结构
这是代码。只需将它添加到 OP 代码的末尾(在 EDIT 2 下)。除非您很有耐心,否则您可能还想注释掉 lut = generate_lut()
和 result = calculate_distance(lut, rgb)
行以及对 cv2 的所有引用。我还向 x
添加了一个随机行,使其协方差矩阵非奇异。
class Full_Model(Model):
ch = np.linalg.cholesky(Model.inverse_pooled_covariance)
chx = Model.x_mean@ch
def rgb2something_vectorized(rgb):
return np.sqrt(np.sum(((rgb - Full_Model.x_mean)@Full_Model.ch)**2, axis=-1))
from scipy.linalg import blas
def rgb2something_blas(rgb):
*shp, nchan = rgb.shape
return np.sqrt(np.einsum('...i,...i', *2*(blas.dtrmm(1, Full_Model.ch.T, rgb.reshape(-1, nchan).T, 0, 0, 0, 0, 0).T - Full_Model.chx,))).reshape(shp)
def generate_lut_vectorized():
return rgb2something_vectorized(np.transpose(np.indices((256, 256, 256))))
def generate_lut_blas():
rng = np.arange(256)
arr = np.empty((256, 256, 256, 3))
arr[0, ..., 0] = rng
arr[0, ..., 1] = rng[:, None]
arr[1:, ...] = arr[0]
arr[..., 2] = rng[:, None, None]
return rgb2something_blas(arr)
def calculate_distance_vectorized(lut, input_image):
return lut[input_image[..., 2], input_image[..., 1], input_image[..., 0]]
# test code
def random_check_lut(lut):
"""Because the original lut generator is excruciatingly slow,
we only compare a random sample, using the original code
"""
levels = 256
levels2 = levels**2
lut = lut.ravel()
levels_range = range(0, levels)
for r, g, b in np.random.randint(0, 256, (1000, 3)):
assert np.isclose(lut[r + (g * levels) + (b * levels2)], rgb2something(r, g, b))
import time
td = []
td.append((time.time(), 'create lut vectorized'))
lutv = generate_lut_vectorized()
td.append((time.time(), 'create lut using blas'))
lutb = generate_lut_blas()
td.append((time.time(), 'lookup using np.take'))
res = calculate_distance(lutv, rgb)
td.append((time.time(), 'process on the fly (no lookup)'))
resotf = rgb2something_vectorized(rgb)
td.append((time.time(), 'process on the fly (blas)'))
resbla = rgb2something_blas(rgb)
td.append((time.time(), 'lookup using fancy indexing'))
resv = calculate_distance_vectorized(lutv, rgb)
td.append((time.time(), None))
print("sanity checks ... ", end='')
assert np.allclose(res, resotf) and np.allclose(res, resv) \
and np.allclose(res, resbla) and np.allclose(lutv, lutb)
random_check_lut(lutv)
print('all ok\n')
t, d = zip(*td)
for ti, di in zip(np.diff(t), d):
print(f'{di:32s} {ti:10.3f} seconds')
样本运行:
sanity checks ... all ok
create lut vectorized 1.116 seconds
create lut using blas 0.917 seconds
lookup using np.take 0.398 seconds
process on the fly (no lookup) 0.127 seconds
process on the fly (blas) 0.069 seconds
lookup using fancy indexing 0.064 seconds
我们可以看到,最好的查找比最好的即时计算差一点。也就是说,该示例可能高估了查找成本,因为随机像素可能比自然图像更不适合缓存。
原始答案(也许对某些人仍然有用)
如果 rgb2something 无法矢量化,而您想处理一张典型图像,那么您可以使用 np.unique
.
获得不错的加速
如果 rgb2something 很昂贵并且必须处理多个图像,那么 unique
可以与缓存结合使用,使用 functools.lru_cache
可以方便地完成---唯一的(次要)绊脚石:参数必须是可散列的。事实证明,这强制修改代码(将 rgb 数组转换为 3 字节字符串)恰好有利于性能。
仅当您拥有覆盖大多数色调的大量像素时才值得使用完整查找 table。在这种情况下,最快的方法是使用 numpy 花式索引进行实际查找。
import numpy as np
import time
import functools
def rgb2something(rgb):
# waste some time:
np.exp(0.1*rgb)
return rgb.mean()
@functools.lru_cache(None)
def rgb2something_lru(rgb):
rgb = np.frombuffer(rgb, np.uint8)
# waste some time:
np.exp(0.1*rgb)
return rgb.mean()
def apply_to_img(img):
shp = img.shape
return np.reshape([rgb2something(x) for x in img.reshape(-1, shp[-1])], shp[:2])
def apply_to_img_lru(img):
shp = img.shape
return np.reshape([rgb2something_lru(x) for x in img.ravel().view('S3')], shp[:2])
def apply_to_img_smart(img, print_stats=True):
shp = img.shape
unq, bck = np.unique(img.reshape(-1, shp[-1]), return_inverse=True, axis=0)
if print_stats:
print('total no pixels', shp[0]*shp[1], '\nno unique pixels', len(unq))
return np.array([rgb2something(x) for x in unq])[bck].reshape(shp[:2])
def apply_to_img_smarter(img, print_stats=True):
shp = img.shape
unq, bck = np.unique(img.ravel().view('S3'), return_inverse=True)
if print_stats:
print('total no pixels', shp[0]*shp[1], '\nno unique pixels', len(unq))
return np.array([rgb2something_lru(x) for x in unq])[bck].reshape(shp[:2])
def make_full_lut():
x = np.empty((3,), np.uint8)
return np.reshape([rgb2something(x) for x[0] in range(256)
for x[1] in range(256) for x[2] in range(256)],
(256, 256, 256))
def make_full_lut_cheat(): # for quicker testing lookup
i, j, k = np.ogrid[:256, :256, :256]
return (i + j + k) / 3
def apply_to_img_full_lut(img, lut):
return lut[(*np.moveaxis(img, 2, 0),)]
from scipy.misc import face
t0 = time.perf_counter()
bw = apply_to_img(face())
t1 = time.perf_counter()
print('naive ', t1-t0, 'seconds')
t0 = time.perf_counter()
bw = apply_to_img_lru(face())
t1 = time.perf_counter()
print('lru first time ', t1-t0, 'seconds')
t0 = time.perf_counter()
bw = apply_to_img_lru(face())
t1 = time.perf_counter()
print('lru second time ', t1-t0, 'seconds')
t0 = time.perf_counter()
bw = apply_to_img_smart(face(), False)
t1 = time.perf_counter()
print('using unique: ', t1-t0, 'seconds')
rgb2something_lru.cache_clear()
t0 = time.perf_counter()
bw = apply_to_img_smarter(face(), False)
t1 = time.perf_counter()
print('unique and lru first: ', t1-t0, 'seconds')
t0 = time.perf_counter()
bw = apply_to_img_smarter(face(), False)
t1 = time.perf_counter()
print('unique and lru second:', t1-t0, 'seconds')
t0 = time.perf_counter()
lut = make_full_lut_cheat()
t1 = time.perf_counter()
print('creating full lut: ', t1-t0, 'seconds')
t0 = time.perf_counter()
bw = apply_to_img_full_lut(face(), lut)
t1 = time.perf_counter()
print('using full lut: ', t1-t0, 'seconds')
print()
apply_to_img_smart(face())
import Image
Image.fromarray(bw.astype(np.uint8)).save('bw.png')
样本运行:
naive 6.8886632949870545 seconds
lru first time 1.7458112589956727 seconds
lru second time 0.4085628940083552 seconds
using unique: 2.0951434450107627 seconds
unique and lru first: 2.0168916099937633 seconds
unique and lru second: 0.3118703299842309 seconds
creating full lut: 151.17599205300212 seconds
using full lut: 0.12164952099556103 seconds
total no pixels 786432
no unique pixels 134105
我有一个函数,我将调用 'rgb2something' 将 RGB 数据 [1x1x3] 转换为单个值(概率),循环遍历输入 RGB 数据中的每个像素结果相当慢。
我尝试了以下方法来加快转换速度。生成 LUT(查找 table):
import numpy as np
levels = 256
levels2 = levels**2
lut = [0] * (levels ** 3)
levels_range = range(0, levels)
for r in levels_range:
for g in levels_range:
for b in levels_range:
lut[r + (g * levels) + (b * levels2)] = rgb2something(r, g, b)
并将RGB转换为变换后的概率图像:
result = np.take(lut, r_channel + (g_channel * 256) + (b_channel * 65536))
但是生成LUT和计算结果仍然很慢。在 2 维中它相当快,但在 3 维(r、g 和 b)中它很慢。我怎样才能提高它的性能?
编辑
rgb2something(r, g, b)
看起来像这样:
def rgb2something(r, g, b):
y = np.array([[r, g, b]])
y_mean = np.mean(y, axis=0)
y_centered = y - y_mean
y_cov = y_centered.T.dot(y_centered) / len(y_centered)
m = len(Consts.x)
n = len(y)
q = m + n
pool_cov = (m / q * x_cov) + (n / q * y_cov)
inv_pool_cov = np.linalg.inv(pool_cov)
g = Consts.x_mean - y_mean
mah = g.T.dot(inv_pool_cov).dot(g) ** 0.5
return mah
编辑 2:
我正在尝试实现的完整工作代码示例,我正在使用 OpenCV,因此欢迎使用任何 OpenCV 方法,例如 Apply LUT,C/C++ 方法也是如此:
import matplotlib.pyplot as plt
import numpy as np
import cv2
class Model:
x = np.array([
[6, 5, 2],
[2, 5, 7],
[6, 3, 1]
])
x_mean = np.mean(x, axis=0)
x_centered = x - x_mean
x_covariance = x_centered.T.dot(x_centered) / len(x_centered)
m = len(x)
n = 1 # Only ever comparing to a single pixel
q = m + n
pooled_covariance = (m / q * x_covariance) # + (n / q * y_cov) -< Always 0 for a single point
inverse_pooled_covariance = np.linalg.inv(pooled_covariance)
def rgb2something(r, g, b):
#Calculates Mahalanobis Distance between pixel and model X
y = np.array([[r, g, b]])
y_mean = np.mean(y, axis=0)
g = Model.x_mean - y_mean
mah = g.T.dot(Model.inverse_pooled_covariance).dot(g) ** 0.5
return mah
def generate_lut():
levels = 256
levels2 = levels**2
lut = [0] * (levels ** 3)
levels_range = range(0, levels)
for r in levels_range:
for g in levels_range:
for b in levels_range:
lut[r + (g * levels) + (b * levels2)] = rgb2something(r, g, b)
return lut
def calculate_distance(lut, input_image):
return np.take(lut, input_image[:, :, 0] + (input_image[:, :, 1] * 256) + (input_image[:, :, 2] * 65536))
lut = generate_lut()
rgb = np.random.randint(255, size=(1080, 1920, 3), dtype=np.uint8)
result = calculate_distance(lut, rgb)
cv2.imshow("Example", rgb)
cv2.imshow("Result", result)
cv2.waitKey(0)
首先,请在您的 rgb2something
函数中添加 Consts
的内容,因为这将有助于我们了解该函数的具体作用。
加速此操作的最佳方法是向量化操作。
1) 无缓存
您不需要为此操作构建查找table。如果您有一个应用于每个 (r, g, b)
向量的函数,您可以使用 np.apply_along_axis
将它简单地应用于图像中的每个向量。在下面的示例中,我假设 rgb2something
的简单定义作为占位符 - 这个函数当然可以替换为您的定义。
def rgb2something(vector):
return sum(vector)
image = np.random.randint(0, 256, size=(100, 100, 3), dtype=np.uint8)
transform = np.apply_along_axis(rgb2something, -1, image)
这采用 image
数组,并将函数 rgb2something
应用于沿轴 -1
(这是最后一个通道轴)的每个一维切片。
2) 延迟填充查找 table
虽然缓存不是必需的,但在特定的用例中它可能会让您受益匪浅。也许您想对数千张图像执行这种 rgb2something
的像素级操作,并且您怀疑许多像素值会在图像中重复。在这种情况下,构建查找 table 可以显着提高性能。我建议懒惰地填充 table(我建议假设您的数据集跨越有些相似的图像 - 具有相似的对象,纹理等,这意味着它们总共只跨越相对较小的子集整个 2^24 次搜索 space)。如果您觉得它们跨越了一个相对较大的子集,您可以预先构建整个查找 table(请参阅下一节)。
lut = [-1] * (256 ** 3)
def actual_rgb2something(vector):
return sum(vector)
def rgb2something(vector):
value = lut[vector[0] + vector[1] * 256 + vector[2] * 65536]
if value == -1:
value = actual_rgb2something(vector)
lut[vector[0] + vector[1] * 256 + vector[2] * 65536] = value
return value
然后您可以像以前一样变换每个图像:
image = np.random.randint(0, 256, size=(100, 100, 3), dtype=np.uint8)
transform = np.apply_along_axis(rgb2something, -1, image)
3) 预计算缓存
也许您的图像足够多样化,可以涵盖整个搜索范围的一大组,并且整个缓存的构建成本可以通过减少查找成本来摊销。
from itertools import product
lut = [-1] * (256 ** 3)
def actual_rgb2something(vector):
return sum(vector)
def fill(vector):
value = actual_rgb2something(vector)
lut[vector[0] + vector[1] * 256 + vector[2] * 65536] = value
# Fill the table
total = list(product(range(256), repeat=3))
np.apply_along_axis(fill, arr=total, axis=1)
现在您无需再次计算这些值,只需从 table:
中查找它们即可def rgb2something(vector):
return lut[vector[0] + vector[1] * 256 + vector[2] * 65536]
转换图像当然和以前一样:
image = np.random.randint(0, 256, size=(100, 100, 3), dtype=np.uint8)
transform = np.apply_along_axis(rgb2something, -1, image)
更新:添加了 blas 优化
有几个直接且非常有效的优化:
(1) 向量化,向量化!基本上向量化此代码中的所有内容并不难。见下文。
(2) 使用正确的查找,即花哨的索引,而不是 np.take
(3) 使用 Cholesky 分解。使用 blas dtrmm
我们可以利用它的三角形结构
这是代码。只需将它添加到 OP 代码的末尾(在 EDIT 2 下)。除非您很有耐心,否则您可能还想注释掉 lut = generate_lut()
和 result = calculate_distance(lut, rgb)
行以及对 cv2 的所有引用。我还向 x
添加了一个随机行,使其协方差矩阵非奇异。
class Full_Model(Model):
ch = np.linalg.cholesky(Model.inverse_pooled_covariance)
chx = Model.x_mean@ch
def rgb2something_vectorized(rgb):
return np.sqrt(np.sum(((rgb - Full_Model.x_mean)@Full_Model.ch)**2, axis=-1))
from scipy.linalg import blas
def rgb2something_blas(rgb):
*shp, nchan = rgb.shape
return np.sqrt(np.einsum('...i,...i', *2*(blas.dtrmm(1, Full_Model.ch.T, rgb.reshape(-1, nchan).T, 0, 0, 0, 0, 0).T - Full_Model.chx,))).reshape(shp)
def generate_lut_vectorized():
return rgb2something_vectorized(np.transpose(np.indices((256, 256, 256))))
def generate_lut_blas():
rng = np.arange(256)
arr = np.empty((256, 256, 256, 3))
arr[0, ..., 0] = rng
arr[0, ..., 1] = rng[:, None]
arr[1:, ...] = arr[0]
arr[..., 2] = rng[:, None, None]
return rgb2something_blas(arr)
def calculate_distance_vectorized(lut, input_image):
return lut[input_image[..., 2], input_image[..., 1], input_image[..., 0]]
# test code
def random_check_lut(lut):
"""Because the original lut generator is excruciatingly slow,
we only compare a random sample, using the original code
"""
levels = 256
levels2 = levels**2
lut = lut.ravel()
levels_range = range(0, levels)
for r, g, b in np.random.randint(0, 256, (1000, 3)):
assert np.isclose(lut[r + (g * levels) + (b * levels2)], rgb2something(r, g, b))
import time
td = []
td.append((time.time(), 'create lut vectorized'))
lutv = generate_lut_vectorized()
td.append((time.time(), 'create lut using blas'))
lutb = generate_lut_blas()
td.append((time.time(), 'lookup using np.take'))
res = calculate_distance(lutv, rgb)
td.append((time.time(), 'process on the fly (no lookup)'))
resotf = rgb2something_vectorized(rgb)
td.append((time.time(), 'process on the fly (blas)'))
resbla = rgb2something_blas(rgb)
td.append((time.time(), 'lookup using fancy indexing'))
resv = calculate_distance_vectorized(lutv, rgb)
td.append((time.time(), None))
print("sanity checks ... ", end='')
assert np.allclose(res, resotf) and np.allclose(res, resv) \
and np.allclose(res, resbla) and np.allclose(lutv, lutb)
random_check_lut(lutv)
print('all ok\n')
t, d = zip(*td)
for ti, di in zip(np.diff(t), d):
print(f'{di:32s} {ti:10.3f} seconds')
样本运行:
sanity checks ... all ok
create lut vectorized 1.116 seconds
create lut using blas 0.917 seconds
lookup using np.take 0.398 seconds
process on the fly (no lookup) 0.127 seconds
process on the fly (blas) 0.069 seconds
lookup using fancy indexing 0.064 seconds
我们可以看到,最好的查找比最好的即时计算差一点。也就是说,该示例可能高估了查找成本,因为随机像素可能比自然图像更不适合缓存。
原始答案(也许对某些人仍然有用)
如果 rgb2something 无法矢量化,而您想处理一张典型图像,那么您可以使用 np.unique
.
如果 rgb2something 很昂贵并且必须处理多个图像,那么 unique
可以与缓存结合使用,使用 functools.lru_cache
可以方便地完成---唯一的(次要)绊脚石:参数必须是可散列的。事实证明,这强制修改代码(将 rgb 数组转换为 3 字节字符串)恰好有利于性能。
仅当您拥有覆盖大多数色调的大量像素时才值得使用完整查找 table。在这种情况下,最快的方法是使用 numpy 花式索引进行实际查找。
import numpy as np
import time
import functools
def rgb2something(rgb):
# waste some time:
np.exp(0.1*rgb)
return rgb.mean()
@functools.lru_cache(None)
def rgb2something_lru(rgb):
rgb = np.frombuffer(rgb, np.uint8)
# waste some time:
np.exp(0.1*rgb)
return rgb.mean()
def apply_to_img(img):
shp = img.shape
return np.reshape([rgb2something(x) for x in img.reshape(-1, shp[-1])], shp[:2])
def apply_to_img_lru(img):
shp = img.shape
return np.reshape([rgb2something_lru(x) for x in img.ravel().view('S3')], shp[:2])
def apply_to_img_smart(img, print_stats=True):
shp = img.shape
unq, bck = np.unique(img.reshape(-1, shp[-1]), return_inverse=True, axis=0)
if print_stats:
print('total no pixels', shp[0]*shp[1], '\nno unique pixels', len(unq))
return np.array([rgb2something(x) for x in unq])[bck].reshape(shp[:2])
def apply_to_img_smarter(img, print_stats=True):
shp = img.shape
unq, bck = np.unique(img.ravel().view('S3'), return_inverse=True)
if print_stats:
print('total no pixels', shp[0]*shp[1], '\nno unique pixels', len(unq))
return np.array([rgb2something_lru(x) for x in unq])[bck].reshape(shp[:2])
def make_full_lut():
x = np.empty((3,), np.uint8)
return np.reshape([rgb2something(x) for x[0] in range(256)
for x[1] in range(256) for x[2] in range(256)],
(256, 256, 256))
def make_full_lut_cheat(): # for quicker testing lookup
i, j, k = np.ogrid[:256, :256, :256]
return (i + j + k) / 3
def apply_to_img_full_lut(img, lut):
return lut[(*np.moveaxis(img, 2, 0),)]
from scipy.misc import face
t0 = time.perf_counter()
bw = apply_to_img(face())
t1 = time.perf_counter()
print('naive ', t1-t0, 'seconds')
t0 = time.perf_counter()
bw = apply_to_img_lru(face())
t1 = time.perf_counter()
print('lru first time ', t1-t0, 'seconds')
t0 = time.perf_counter()
bw = apply_to_img_lru(face())
t1 = time.perf_counter()
print('lru second time ', t1-t0, 'seconds')
t0 = time.perf_counter()
bw = apply_to_img_smart(face(), False)
t1 = time.perf_counter()
print('using unique: ', t1-t0, 'seconds')
rgb2something_lru.cache_clear()
t0 = time.perf_counter()
bw = apply_to_img_smarter(face(), False)
t1 = time.perf_counter()
print('unique and lru first: ', t1-t0, 'seconds')
t0 = time.perf_counter()
bw = apply_to_img_smarter(face(), False)
t1 = time.perf_counter()
print('unique and lru second:', t1-t0, 'seconds')
t0 = time.perf_counter()
lut = make_full_lut_cheat()
t1 = time.perf_counter()
print('creating full lut: ', t1-t0, 'seconds')
t0 = time.perf_counter()
bw = apply_to_img_full_lut(face(), lut)
t1 = time.perf_counter()
print('using full lut: ', t1-t0, 'seconds')
print()
apply_to_img_smart(face())
import Image
Image.fromarray(bw.astype(np.uint8)).save('bw.png')
样本运行:
naive 6.8886632949870545 seconds
lru first time 1.7458112589956727 seconds
lru second time 0.4085628940083552 seconds
using unique: 2.0951434450107627 seconds
unique and lru first: 2.0168916099937633 seconds
unique and lru second: 0.3118703299842309 seconds
creating full lut: 151.17599205300212 seconds
using full lut: 0.12164952099556103 seconds
total no pixels 786432
no unique pixels 134105