将 Spring 与 Spark 一起使用
Use Spring together with Spark
我正在开发一个 Spark 应用程序,我习惯于 Spring 作为依赖注入框架。现在我遇到了这个问题,处理部分使用了Spring的@Autowired功能,但它是由Spark序列化和反序列化的。
所以下面的代码让我陷入困境:
Processor processor = ...; // This is a Spring constructed object
// and makes all the trouble
JavaRDD<Txn> rdd = ...; // some data for Spark
rdd.foreachPartition(processor);
处理器看起来像这样:
public class Processor implements VoidFunction<Iterator<Txn>>, Serializeable {
private static final long serialVersionUID = 1L;
@Autowired // This will not work if the object is deserialized
private transient DatabaseConnection db;
@Override
public void call(Iterator<Txn> txns) {
... // do some fance stuff
db.store(txns);
}
}
所以我的问题是:是否可以将 Spring 之类的东西与 Spark 结合使用?如果没有,做这样的事情最优雅的方法是什么?感谢您的帮助!
来自问题提问者:添加: 要直接干扰反序列化部分而不修改您自己的 classes 使用以下 spring-spark project by parapluplu
.当它被 spring.
反序列化时,这个项目会自动装配你的 bean
编辑:
为了使用 Spark,您需要进行以下设置(也见于 this repository):
- Spring 开机 + Spark:
.
<parent>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>1.5.2.RELEASE</version>
<relativePath/>
<!-- lookup parent from repository -->
</parent>
...
<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
<exclusions>
<exclusion>
<groupId>ch.qos.logback</groupId>
<artifactId>logback-classic</artifactId>
</exclusion>
</exclusions>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.spark/spark-core_2.11 -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.11</artifactId>
<version>2.1.0</version>
<exclusions>
<exclusion>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-log4j12</artifactId>
</exclusion>
<exclusion>
<groupId>log4j</groupId>
<artifactId>log4j</artifactId>
</exclusion>
</exclusions>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.spark/spark-sql_2.11 -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.11</artifactId>
<version>2.1.0</version>
</dependency>
<!-- fix java.lang.ClassNotFoundException: org.codehaus.commons.compiler.UncheckedCompileException -->
<dependency>
<groupId>org.codehaus.janino</groupId>
<artifactId>commons-compiler</artifactId>
<version>2.7.8</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.slf4j/log4j-over-slf4j -->
<dependency>
<groupId>org.slf4j</groupId>
<artifactId>log4j-over-slf4j</artifactId>
<version>1.7.25</version>
</dependency>
<dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-api</artifactId>
<version>1.7.5</version>
</dependency>
<dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-simple</artifactId>
<version>1.6.4</version>
</dependency>
</dependencies>
然后你需要应用程序 class,像往常一样 Spring Boot:
@SpringBootApplication
public class SparkExperimentApplication {
public static void main(String[] args) {
SpringApplication.run(SparkExperimentApplication.class, args);
}
}
然后是将它们绑定在一起的配置
@Configuration
@PropertySource("classpath:application.properties")
public class ApplicationConfig {
@Autowired
private Environment env;
@Value("${app.name:jigsaw}")
private String appName;
@Value("${spark.home}")
private String sparkHome;
@Value("${master.uri:local}")
private String masterUri;
@Bean
public SparkConf sparkConf() {
SparkConf sparkConf = new SparkConf()
.setAppName(appName)
.setSparkHome(sparkHome)
.setMaster(masterUri);
return sparkConf;
}
@Bean
public JavaSparkContext javaSparkContext() {
return new JavaSparkContext(sparkConf());
}
@Bean
public SparkSession sparkSession() {
return SparkSession
.builder()
.sparkContext(javaSparkContext().sc())
.appName("Java Spark SQL basic example")
.getOrCreate();
}
@Bean
public static PropertySourcesPlaceholderConfigurer propertySourcesPlaceholderConfigurer() {
return new PropertySourcesPlaceholderConfigurer();
}
}
然后就可以使用SparkSession
class与Spark通信SQL:
/**
* Created by achat1 on 9/23/15.
* Just an example to see if it works.
*/
@Component
public class WordCount {
@Autowired
private SparkSession sparkSession;
public List<Count> count() {
String input = "hello world hello hello hello";
String[] _words = input.split(" ");
List<Word> words = Arrays.stream(_words).map(Word::new).collect(Collectors.toList());
Dataset<Row> dataFrame = sparkSession.createDataFrame(words, Word.class);
dataFrame.show();
//StructType structType = dataFrame.schema();
RelationalGroupedDataset groupedDataset = dataFrame.groupBy(col("word"));
groupedDataset.count().show();
List<Row> rows = groupedDataset.count().collectAsList();//JavaConversions.asScalaBuffer(words)).count();
return rows.stream().map(new Function<Row, Count>() {
@Override
public Count apply(Row row) {
return new Count(row.getString(0), row.getLong(1));
}
}).collect(Collectors.toList());
}
}
指的是这两个classes:
public class Word {
private String word;
public Word() {
}
public Word(String word) {
this.word = word;
}
public void setWord(String word) {
this.word = word;
}
public String getWord() {
return word;
}
}
public class Count {
private String word;
private long count;
public Count() {
}
public Count(String word, long count) {
this.word = word;
this.count = count;
}
public String getWord() {
return word;
}
public void setWord(String word) {
this.word = word;
}
public long getCount() {
return count;
}
public void setCount(long count) {
this.count = count;
}
}
然后就可以运行看到了returns正确的数据:
@RequestMapping("api")
@Controller
public class ApiController {
@Autowired
WordCount wordCount;
@RequestMapping("wordcount")
public ResponseEntity<List<Count>> words() {
return new ResponseEntity<>(wordCount.count(), HttpStatus.OK);
}
}
说
[{"word":"hello","count":4},{"word":"world","count":1}]
我正在开发一个 Spark 应用程序,我习惯于 Spring 作为依赖注入框架。现在我遇到了这个问题,处理部分使用了Spring的@Autowired功能,但它是由Spark序列化和反序列化的。
所以下面的代码让我陷入困境:
Processor processor = ...; // This is a Spring constructed object
// and makes all the trouble
JavaRDD<Txn> rdd = ...; // some data for Spark
rdd.foreachPartition(processor);
处理器看起来像这样:
public class Processor implements VoidFunction<Iterator<Txn>>, Serializeable {
private static final long serialVersionUID = 1L;
@Autowired // This will not work if the object is deserialized
private transient DatabaseConnection db;
@Override
public void call(Iterator<Txn> txns) {
... // do some fance stuff
db.store(txns);
}
}
所以我的问题是:是否可以将 Spring 之类的东西与 Spark 结合使用?如果没有,做这样的事情最优雅的方法是什么?感谢您的帮助!
来自问题提问者:添加: 要直接干扰反序列化部分而不修改您自己的 classes 使用以下 spring-spark project by parapluplu
.当它被 spring.
编辑:
为了使用 Spark,您需要进行以下设置(也见于 this repository):
- Spring 开机 + Spark:
.
<parent>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>1.5.2.RELEASE</version>
<relativePath/>
<!-- lookup parent from repository -->
</parent>
...
<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
<exclusions>
<exclusion>
<groupId>ch.qos.logback</groupId>
<artifactId>logback-classic</artifactId>
</exclusion>
</exclusions>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.spark/spark-core_2.11 -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.11</artifactId>
<version>2.1.0</version>
<exclusions>
<exclusion>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-log4j12</artifactId>
</exclusion>
<exclusion>
<groupId>log4j</groupId>
<artifactId>log4j</artifactId>
</exclusion>
</exclusions>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.spark/spark-sql_2.11 -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.11</artifactId>
<version>2.1.0</version>
</dependency>
<!-- fix java.lang.ClassNotFoundException: org.codehaus.commons.compiler.UncheckedCompileException -->
<dependency>
<groupId>org.codehaus.janino</groupId>
<artifactId>commons-compiler</artifactId>
<version>2.7.8</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.slf4j/log4j-over-slf4j -->
<dependency>
<groupId>org.slf4j</groupId>
<artifactId>log4j-over-slf4j</artifactId>
<version>1.7.25</version>
</dependency>
<dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-api</artifactId>
<version>1.7.5</version>
</dependency>
<dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-simple</artifactId>
<version>1.6.4</version>
</dependency>
</dependencies>
然后你需要应用程序 class,像往常一样 Spring Boot:
@SpringBootApplication
public class SparkExperimentApplication {
public static void main(String[] args) {
SpringApplication.run(SparkExperimentApplication.class, args);
}
}
然后是将它们绑定在一起的配置
@Configuration
@PropertySource("classpath:application.properties")
public class ApplicationConfig {
@Autowired
private Environment env;
@Value("${app.name:jigsaw}")
private String appName;
@Value("${spark.home}")
private String sparkHome;
@Value("${master.uri:local}")
private String masterUri;
@Bean
public SparkConf sparkConf() {
SparkConf sparkConf = new SparkConf()
.setAppName(appName)
.setSparkHome(sparkHome)
.setMaster(masterUri);
return sparkConf;
}
@Bean
public JavaSparkContext javaSparkContext() {
return new JavaSparkContext(sparkConf());
}
@Bean
public SparkSession sparkSession() {
return SparkSession
.builder()
.sparkContext(javaSparkContext().sc())
.appName("Java Spark SQL basic example")
.getOrCreate();
}
@Bean
public static PropertySourcesPlaceholderConfigurer propertySourcesPlaceholderConfigurer() {
return new PropertySourcesPlaceholderConfigurer();
}
}
然后就可以使用SparkSession
class与Spark通信SQL:
/**
* Created by achat1 on 9/23/15.
* Just an example to see if it works.
*/
@Component
public class WordCount {
@Autowired
private SparkSession sparkSession;
public List<Count> count() {
String input = "hello world hello hello hello";
String[] _words = input.split(" ");
List<Word> words = Arrays.stream(_words).map(Word::new).collect(Collectors.toList());
Dataset<Row> dataFrame = sparkSession.createDataFrame(words, Word.class);
dataFrame.show();
//StructType structType = dataFrame.schema();
RelationalGroupedDataset groupedDataset = dataFrame.groupBy(col("word"));
groupedDataset.count().show();
List<Row> rows = groupedDataset.count().collectAsList();//JavaConversions.asScalaBuffer(words)).count();
return rows.stream().map(new Function<Row, Count>() {
@Override
public Count apply(Row row) {
return new Count(row.getString(0), row.getLong(1));
}
}).collect(Collectors.toList());
}
}
指的是这两个classes:
public class Word {
private String word;
public Word() {
}
public Word(String word) {
this.word = word;
}
public void setWord(String word) {
this.word = word;
}
public String getWord() {
return word;
}
}
public class Count {
private String word;
private long count;
public Count() {
}
public Count(String word, long count) {
this.word = word;
this.count = count;
}
public String getWord() {
return word;
}
public void setWord(String word) {
this.word = word;
}
public long getCount() {
return count;
}
public void setCount(long count) {
this.count = count;
}
}
然后就可以运行看到了returns正确的数据:
@RequestMapping("api")
@Controller
public class ApiController {
@Autowired
WordCount wordCount;
@RequestMapping("wordcount")
public ResponseEntity<List<Count>> words() {
return new ResponseEntity<>(wordCount.count(), HttpStatus.OK);
}
}
说
[{"word":"hello","count":4},{"word":"world","count":1}]