ValueError: operands could not be broadcast together with shapes in concatenatinng arrays across pandas columns
ValueError: operands could not be broadcast together with shapes in concatenatinng arrays across pandas columns
我正在使用一个 pandas 数据框,它看起来像这样:
col1 col2 col3 col_num
0 [-0.20447069290738076, 0.4159556680196389, -0.... [-0.10935000772973974, -0.04425263358067333, -... [51.0834196, 10.4234469] 3160
1 [-0.42439951483476124, -0.3135960467759942, 0.... [0.3842614765721414, -0.06756644506033657, 0.4... [45.5643442, 17.0118954] 3159
3 [0.3158755226012898, -0.007057682056994253, 0.... [-0.33158941456615376, 0.09637640660002277, -0... [50.6402809, 4.6667145] 3157
5 [-0.011089723491692679, -0.01649481399305317, ... [-0.02827408211098023, 0.00019040943944721592,... [53.45733965, -2.22695880505223] 3157
我想像这样跨行连接向量:
df['col1'] + df['col2'] + df['col3'] + df['col_num'].transform(lambda item: [item])
但是我收到以下错误提示:
/opt/conda/lib/python3.6/site-packages/pandas/core/ops.py in <lambda>(x)
708 if is_object_dtype(lvalues):
709 return libalgos.arrmap_object(lvalues,
--> 710 lambda x: op(x, rvalues))
711 raise
712
ValueError: operands could not be broadcast together with shapes (30,) (86597,)
看起来由于某种原因 ti 在连接只有 2 个维度的第 3 列时卡住了。数据长 86597 行。我该如何解决这个错误?
您可以将有问题的列转换为 list
,例如:
df['col1'] + df['col2'] + df['col3'].apply(list) + df['col_num'].transform(lambda x: [x])
另一个解决方案是将所有列表转换为 2d numpy 数组并使用 hstack
,如果每列中的列表长度相同,因为您失去了使用连续内存块中保存的 NumPy 数组的矢量化功能:
np.random.seed(123)
N = 10
df = pd.DataFrame({
"col1": [np.random.randint(10, size=3) for i in range(N)],
"col2": [np.random.randint(10, size=3) for i in range(N)],
"col3": [np.random.randint(10, size=2) for i in range(N)],
'col_num': range(N)
})
print (df)
col1 col2 col3 col_num
0 [2, 2, 6] [9, 3, 4] [2, 4] 0
1 [1, 3, 9] [6, 1, 5] [8, 1] 1
2 [6, 1, 0] [6, 2, 1] [2, 1] 2
3 [1, 9, 0] [8, 3, 5] [1, 3] 3
4 [0, 9, 3] [0, 2, 6] [5, 9] 4
5 [4, 0, 0] [2, 4, 4] [0, 8] 5
6 [4, 1, 7] [6, 3, 0] [1, 6] 6
7 [3, 2, 4] [6, 4, 7] [3, 3] 7
8 [7, 2, 4] [6, 7, 1] [5, 9] 8
9 [8, 0, 7] [5, 7, 9] [7, 9] 9
a = np.array(df['col1'].values.tolist())
b = np.array(df['col2'].values.tolist())
c = np.array(df['col3'].values.tolist())
#create Nx1 array
d = df['col_num'].values[:, None]
arr = np.hstack((a,b,c, d))
print (arr)
[[2 2 6 9 3 4 2 4 0]
[1 3 9 6 1 5 8 1 1]
[6 1 0 6 2 1 2 1 2]
[1 9 0 8 3 5 1 3 3]
[0 9 3 0 2 6 5 9 4]
[4 0 0 2 4 4 0 8 5]
[4 1 7 6 3 0 1 6 6]
[3 2 4 6 4 7 3 3 7]
[7 2 4 6 7 1 5 9 8]
[8 0 7 5 7 9 7 9 9]]
df = pd.DataFrame(arr)
print (df)
0 1 2 3 4 5 6 7 8
0 2 2 6 9 3 4 2 4 0
1 1 3 9 6 1 5 8 1 1
2 6 1 0 6 2 1 2 1 2
3 1 9 0 8 3 5 1 3 3
4 0 9 3 0 2 6 5 9 4
5 4 0 0 2 4 4 0 8 5
6 4 1 7 6 3 0 1 6 6
7 3 2 4 6 4 7 3 3 7
8 7 2 4 6 7 1 5 9 8
9 8 0 7 5 7 9 7 9 9
我正在使用一个 pandas 数据框,它看起来像这样:
col1 col2 col3 col_num
0 [-0.20447069290738076, 0.4159556680196389, -0.... [-0.10935000772973974, -0.04425263358067333, -... [51.0834196, 10.4234469] 3160
1 [-0.42439951483476124, -0.3135960467759942, 0.... [0.3842614765721414, -0.06756644506033657, 0.4... [45.5643442, 17.0118954] 3159
3 [0.3158755226012898, -0.007057682056994253, 0.... [-0.33158941456615376, 0.09637640660002277, -0... [50.6402809, 4.6667145] 3157
5 [-0.011089723491692679, -0.01649481399305317, ... [-0.02827408211098023, 0.00019040943944721592,... [53.45733965, -2.22695880505223] 3157
我想像这样跨行连接向量: df['col1'] + df['col2'] + df['col3'] + df['col_num'].transform(lambda item: [item])
但是我收到以下错误提示:
/opt/conda/lib/python3.6/site-packages/pandas/core/ops.py in <lambda>(x)
708 if is_object_dtype(lvalues):
709 return libalgos.arrmap_object(lvalues,
--> 710 lambda x: op(x, rvalues))
711 raise
712
ValueError: operands could not be broadcast together with shapes (30,) (86597,)
看起来由于某种原因 ti 在连接只有 2 个维度的第 3 列时卡住了。数据长 86597 行。我该如何解决这个错误?
您可以将有问题的列转换为 list
,例如:
df['col1'] + df['col2'] + df['col3'].apply(list) + df['col_num'].transform(lambda x: [x])
另一个解决方案是将所有列表转换为 2d numpy 数组并使用 hstack
,如果每列中的列表长度相同,因为您失去了使用连续内存块中保存的 NumPy 数组的矢量化功能:
np.random.seed(123)
N = 10
df = pd.DataFrame({
"col1": [np.random.randint(10, size=3) for i in range(N)],
"col2": [np.random.randint(10, size=3) for i in range(N)],
"col3": [np.random.randint(10, size=2) for i in range(N)],
'col_num': range(N)
})
print (df)
col1 col2 col3 col_num
0 [2, 2, 6] [9, 3, 4] [2, 4] 0
1 [1, 3, 9] [6, 1, 5] [8, 1] 1
2 [6, 1, 0] [6, 2, 1] [2, 1] 2
3 [1, 9, 0] [8, 3, 5] [1, 3] 3
4 [0, 9, 3] [0, 2, 6] [5, 9] 4
5 [4, 0, 0] [2, 4, 4] [0, 8] 5
6 [4, 1, 7] [6, 3, 0] [1, 6] 6
7 [3, 2, 4] [6, 4, 7] [3, 3] 7
8 [7, 2, 4] [6, 7, 1] [5, 9] 8
9 [8, 0, 7] [5, 7, 9] [7, 9] 9
a = np.array(df['col1'].values.tolist())
b = np.array(df['col2'].values.tolist())
c = np.array(df['col3'].values.tolist())
#create Nx1 array
d = df['col_num'].values[:, None]
arr = np.hstack((a,b,c, d))
print (arr)
[[2 2 6 9 3 4 2 4 0]
[1 3 9 6 1 5 8 1 1]
[6 1 0 6 2 1 2 1 2]
[1 9 0 8 3 5 1 3 3]
[0 9 3 0 2 6 5 9 4]
[4 0 0 2 4 4 0 8 5]
[4 1 7 6 3 0 1 6 6]
[3 2 4 6 4 7 3 3 7]
[7 2 4 6 7 1 5 9 8]
[8 0 7 5 7 9 7 9 9]]
df = pd.DataFrame(arr)
print (df)
0 1 2 3 4 5 6 7 8
0 2 2 6 9 3 4 2 4 0
1 1 3 9 6 1 5 8 1 1
2 6 1 0 6 2 1 2 1 2
3 1 9 0 8 3 5 1 3 3
4 0 9 3 0 2 6 5 9 4
5 4 0 0 2 4 4 0 8 5
6 4 1 7 6 3 0 1 6 6
7 3 2 4 6 4 7 3 3 7
8 7 2 4 6 7 1 5 9 8
9 8 0 7 5 7 9 7 9 9