变量的多模式

Multiple Modes by variables

我似乎找不到问题的答案。

这是示例数据

Credit Card Type  Bank   Year   Total Balance
MASTER CARD       BOFA   2017   0
MASTER CARD       BOFA   2017   0
MASTER CARD       BOFA   2017   0
VISA              Wells  2018    
VISA              Wells  2018   
VISA              Wells  2018   

等等

我想弄清楚如何通过所有变量的总余额来获得模式 所以最后会变成这样

期望的输出:

Credit Card Type  Bank   Year   Mode
MASTER CARD       BOFA   2017   0
VISA              Wells  2018   

按照 Frank 的建议,使用 whosebug.com/q/2547402 中的 Mode,使用 dplyr 很容易做到这一点。

library(dplyr)

df %>% 
    group_by(CreditCardType, Bank, Year) %>%
    summarise(mode = Mode(TotalBalance))

其中 df 是:

df <- read.table(text = 'CreditCardType  Bank   Year   TotalBalance
MASTERCARD       BOFA   2017   0
MASTERCARD       BOFA   2017   0
MASTERCARD       BOFA   2017   0
VISA              Wells  2018    
VISA              Wells  2018   
VISA              Wells  2018   ', header = T, stringsAsFactors = F)

来自这个问题

library(plyr)
getmode<- function(origtable,groupby,columnname) {
  data <- ddply (origtable, groupby, .fun = function(xx){
    c(m1 = paste(names(sort(table(xx[,columnname]),decreasing=TRUE)[1]))
    ) } ) 
  return(data)
}

getmode(df,c("CreditCardType","Bank","Year"),"TotalBalance")

df<-read.table(text="CreditCardType  Bank   Year   TotalBalance
MASTERCARD       BOFA   2017   0
MASTERCARD       BOFA   2017   0
MASTERCARD       BOFA   2017   0
VISA              Wells  2018    
VISA              Wells  2018   
VISA              Wells  2018   ", header=T, stringsAsFactors=F)

不同的dplyr解决方案:

df %>%
  add_count(Credit_Card_Type, Bank, Year, Total_Balance) %>%
  filter(n == max(n)) %>%
  distinct() %>%
  select(-n)

考虑关系并选择第一个模式值:

df %>%
  add_count(Credit_Card_Type, Bank, Year, Total_Balance) %>%
  filter(n == max(n)) %>%
  distinct() %>%
  select(-n) %>%
  group_by(Credit_Card_Type, Bank, Year) %>%
  summarise(Total_Balance = first(Total_Balance))

数据:

df <- read.table(text = "Credit_Card_Type Bank Year Total_Balance
           MASTER_CARD BOFA 2017 100
           MASTER_CARD BOFA 2017 100
           MASTER_CARD BOFA 2017 700
           VISA Wells 2018 60
           VISA Wells 2018 50
           VISA Wells 2018 60", header = TRUE)

我找到了使用 data.table 和 modeest 包的解决方案。

library(data.table)
library(modeest)
dt <- data.table("Type"=c(rep("MASTERCARD",3),rep("VISA",3)),"Bank"=c(rep("BOFA",3),rep("Wells",3)),"Year"=c(rep(2017,3),rep(2018,3)),"TotalBalance"=c(100,100,700,60,50,60))
dt[,mfv(TotalBalance)[1],by=c("Type","Bank","Year")]

          Type  Bank Year  V1
 1: MASTERCARD  BOFA 2017 100
 2:       VISA Wells 2018  60