如何创建一个包含点组的超帧,每个点都与 R 中的唯一 window 相关联

How to create a hyperframe containing groups of points with marks each associated with a unique window in R

尽管进行了在线搜索并咨询了 Baddeley 和 Rubak 的空间点模式:R 的方法论和应用,但我还是难以将点模式转换为超帧。我是 R 和空间统计的新手。任何帮助将非常感激! 我的情况: 我有一个来自 GIS 的点 shapefile 和一个多边形 shapefile。点 shapefile 包含 x y 坐标以及许多分组变量、协变量和响应变量。 多边形 shapefile 包含点所在的绘图坐标,并包含绘图 ID 列。

我需要根据几个因素来描述和分析点模式,包括每个地块内和地块之间。注:该地块为实验单元。根据阅读资料,我得出结论,超帧是对用户最友好的分析方法。 作为一个例子,这是我想象超帧的方式:

PlotID  Point#  X Coord     Y Coord Color   Size    Sex     Weight  Growth
    A   1       514514.5    3372057 Red     Small   Female  10      0.5
    A   2       514484.2    3372062 Red     Medium  Male    14      0.6
    A   3       514517.8    3372017 Red     Large   Female  12      0.6
    B   1       524514.5    3372065 Blue    Small   Male    14      0.4
    B   2       524484.2    3372067 Blue    Small   Male    16      0.3
    B   3       524517.8    3372063 Blue    Large   Male    10      0.35
    C   1       504514.5    3372041 Red     Medium  Female  10      0.7
    C   2       504484.2    3372042 Red     Large   Female  12      0.4
    C   3       504517.8    3372038 Red     Small   Male    16      0.6
    D   1       504517.8    3372038 Blue    Small   Male    10      0.7
    D   2       504517.8    3372038 Blue    Medium  Female  12      0.3
    D   3       504517.8    3372038 Blue    Small   Male    16      0.6

上述超帧可用于按颜色对点模式进行分组,以分析点模式的差异。

我通过用关联点对单个图进行子集化,成功地将 shapefile 的简化版本转换为超帧。这是代码:

    library(sp)
    library(spatstat)
    library(shapefiles)
    library(maptools)
    library(rgdal)

    x <- readShapeSpatial("Points_subset.shp") #creates a spatial points 
                                               #dataframe
    x.data <- slot(x,"data") #columns of the data frame used as marks 
    p <- readShapeSpatial("Plot_subset") #creates spatial polygons df.  
    w <- as(as(p,"SpatialPolygons"),"owin") #assign the plot boundary as the 
                                            #window of the point pattern
    y <- as(x, "SpatialPoints") #Assign point coordinates as spatial points
    z <- as(y, "ppp") #Convert to class "ppp"
    z <- z[w] #Assign the plot boundary as the window of the ppp
    marks(z) <- x.data #Attach the data.frame of variables to the ppp.
    plot(z) #Correctly produces 1 plot containing all points

但是,当我使用循环对多个图应用相同的过程时,超帧仅包含来自单个图的信息。这是多图的代码:

    xm <- readShapeSpatial("Points_All.shp")
    xm.data <- slot(xm,"data")
    xn <- levels(unique(xm$PlotID)) #identify all plots

    pm <- readShapeSpatial("Plots_All.shp") 

    for(i in 1:length(xn)) {
    pm2 <- subset(pm, pm$PlotID == xn[i])
    wm2 <- as(as(pm2,"SpatialPolygons"),"owin")#list of polygon windows
    xm2 <- subset(xm, xm$PlotID == xn[i])
    xm2.data <- subset(xm.data, xm.data$PlotID == xn[i])
    ym <- as(xm2, "SpatialPoints")
    zm2 <- as.ppp(coordinates(ym),wm2)
    marks(zm2) <- xm2.data
    unitname(zm) <- c("metre","metres")
    plot(zm2, main=paste(xn[i])) #plots each plot's points with correct 
                                 #window
    }

调查zm2

    str(zm2) # Although all plots print above, "str" shows only the first 
             #plot 
    View(zm2)#Contains only the points of the first plot

转换为超帧

    zm2.hyp <- as.hyperframe(zm2)
    str(zm2.hyp) #as above, contains a row for each point of the first plot.
                 #hyperframe should include points for all plots

如何在超帧中包含所有图?

是的,您需要将数据排列在超帧中进行分析。这个超帧的每一行都将包含一个实验单元的所有数据——也就是说,超帧的每一行都将包含一个点模式,包括它的边界多边形。

但是,在您发布的第一个显示框中(标题 "As an example here's how I imagine the hyperframe"),每一行都包含一个点的数据。那不是你想要的。此框中的数据可以表示为 data.frame,您的第一个任务是将其分成包含每个点模式数据的组。

假设您已经设置了一个 data.frame,其中包含在第一个显示框中绘制的所有数据。称之为df。首先我们根据PlotID变量将这个数据框拆分成几个数据框:

dflist <- split(df, PlotID)

结果是一个列表,其中每个元素都是一个数据框,df[[i]] 包含第 i 个点模式的坐标数据。

接下来您要将这些数据框与相应的边界多边形相匹配。假设你收集了 边界多边形作为列表 blist,其中 blist[[i]] 是第 i 个多边形。为了匹配坐标和边界,

plist <- mapply(as.ppp, X=dflist, W=blist, SIMPLIFY=FALSE)

结果应该是点模式列表(所有其他变量,例如 SexColour 将 "marks" 附加到这些模式)。从此列表中,您可以构建超帧,例如

H <- hyperframe(X=plist)

但您需要在超框架中添加更多列以适应有趣的模型。

Adrian Baddeley 的回答引导我朝着正确的方向前进,但我的数据框必须在代码运行之前重新组织。 解决方案:

    #load points shapefile    
    xm <- readShapeSpatial("Points_All.shp")

    #coerce spatialpointdataframe to dataframe
    xm.df <- as.data.frame(xm) 

    #reorder df so X and Y data are the first columns as required for mapply
    xm.df.d <- xm.df[,c(5,6,25,1:4,7:24)]
    #Remove plotlevel data except plotID. Only point level data remains    
    xm.df.d <- xm.df.d[,-c(4,6,7,9,10)]

    #Create list of dataframes with all point data based on Plotnam.
    xm.df.l <- split(xm.df.d, f=xm.df.d$plotID)

    #select plot level data from df. Combine plot level to the hyperframe 
    #later
    plot.df <- xm.df[,c(3,6,9,10)]
    plot.df <- unique(plot.df)
    #check df length same as hyperframe length
    nrow(plot.df)

    #load plot polygons shapefile. Use as windows
    pm <- readShapeSpatial("Plots_All")

    #list of plots based on plotID
    pm.l <- split(pm, pm$plotID)
    #Coerce plots to owin type objects
    pm.l.win <- lapply(pm.l, as.owin)

#A Baddeley, E Rubak, R Turner - 2015 pg 55-56 details the mapply procedure
#Note: procedure will not work unless X and Y coord data are the first 2 
#columns of the df.
    zml <- mapply(as.ppp, X = xm.df.l, W = pm.l.win,SIMPLIFY=FALSE)

    H <- hyperframe(X=zml)

#combine the point pattern of the hyperframe with plot level data
#produces a hyperframe of ppp for each plot, with columns of plot level data 
#such as Vegetation Type for each plot. Data for each point, such as tree 
#height and species, are stored within the $marks 
    Final.hyp <- cbind.hyperframe(H,plot.df)