Python Cartopy 映射
Python Cartopy mapping
我正在尝试根据来自 NASA 的 public 数据在全球地图上绘制 CO2 水平图,并根据数据并使用 Panoply 软件将这些值描绘为(long,lat,value)地形图,这是我的情节应该是这样的:
数据为 .nc4 格式,可以正确读取,但是我无法获取数据图 我正在使用 Cartopy API 并遵循以下示例:(https://scitools.org.uk/cartopy/docs/latest/gallery/waves.html#sphx-glr-gallery-waves-py).
我也不想用底图
尝试 # 1:
参见下面的Python代码:
from netCDF4 import Dataset
import numpy as np
import matplotlib.pyplot as plt
import numpy as np
import cartopy.crs as ccrs
"""
function that download each OCO - 2 data that is in .nc4 format from file "subset_OCO2_L2_ABand_V8_20180929_010345.txt"
which is list of links
for all data with date range 2015 - 09 - 01 to 2016 - 01 - 01# make sure that you have a valid user name & password by registering in https: //earthdata.nasa.gov/
#implementation based on http: //unidata.github.io/netcdf4-python/#section1"""
def download_oco2_nc4(username, password, filespath):
filespath = "C:\Users\Desktop\oco2\oco2_LtCO2_150831_B8100r_171009083146s.nc4"
dataset = Dataset(filespath)
print(dataset.file_format)
print(dataset.dimensions.keys())
print(dataset.variables['xco2'])
XCO2 = []
LONGITUDE = []
LATITUDE = []
# XCO2
XCO2 = dataset.variables['xco2'][:]
print("->", type(XCO2))
print(dataset.variables['latitude'])
# LATITUDE
LATITUDE = dataset.variables['latitude'][:]
print(dataset.variables['longitude'])
# LONGITUDE
LONGITUDE = dataset.variables['longitude'][:]
return XCO2, LONGITUDE, LATITUDE, dataset
def mapXoco2():
fig = plt.figure(figsize = (10, 5))
ax = fig.add_subplot(1, 1, 1, projection = ccrs.Mollweide())
XCO2, LONGITUDE, LATITUDE, dataset = download_oco2_nc4(1, 2, 3)
dataset.close()
XCO2_subset = list()
counter = 0
for xco2 in XCO2:
if counter < 10:
XCO2_subset.append(xco2)
counter = counter + 1
else:
break
print("XCO2_subset="+str(len(XCO2_subset)))
counter = 0
LONGITUDE_subset = list()
for longitude in LONGITUDE:
if counter < 10:
LONGITUDE_subset.append(longitude)
counter = counter + 1
else:
break
print("LONGITUDE_subset="+str(len(LONGITUDE_subset)))
counter = 0
LATITUDE_subset = list()
for latitude in LATITUDE:
if counter < 10:
LATITUDE_subset.append(latitude)
counter = counter + 1
else:
break
print("LATITUDE_subset="+str(len(LATITUDE_subset)))
XCO2_subset = np.array(XCO2_subset)
LONGITUDE_subset = np.array(LONGITUDE_subset)
LATITUDE_subset = np.array(LATITUDE_subset)
#LONGITUDE_subset, LATITUDE_subset = np.meshgrid(LONGITUDE_subset, LATITUDE_subset)
#XCO2_subset,XCO2_subset = np.meshgrid(XCO2_subset,XCO2_subset)
ax.contourf(LONGITUDE_subset,LATITUDE_subset,XCO2_subset,
transform = ccrs.Mollweide(central_longitude=0, globe=None),
cmap = 'nipy_spectral')
ax.coastlines()
ax.set_global()
plt.show()
print(XCO2_subset)
mapXoco2()
当我注释掉这些行时:
#LONGITUDE_subset, LATITUDE_subset = np.meshgrid(LONGITUDE_subset, LATITUDE_subset)
#XCO2_subset,XCO2_subset = np.meshgrid(XCO2_subset,XCO2_subset)
我得到一个错误:
引发 TypeError("Input z must be a 2D array.")
类型错误:输入 z 必须是二维数组。
但是当我不评论这些行时:
LONGITUDE_subset, LATITUDE_subset = np.meshgrid(LONGITUDE_subset, LATITUDE_subset)
XCO2_subset,XCO2_subset = np.meshgrid(XCO2_subset,XCO2_subset
)
我得到一张空地图,我看到大陆但没有标绘值 C02 值。
我认为我对输入的 1D 到 2D 转换的解释不正确。
尝试 # 2(更新):
我没有处理 why/what API 中的这些二维变换,而是使用循环将每个点 1 乘 1 地绘制出来。问题是虽然我可以看到更多数据(我只绘制了大约 10% 的数据)我看不到 MAP/CONTINENTS 我看到白色背景上的值图???,请参见代码:
from netCDF4 import Dataset
import numpy as np
import matplotlib.pyplot as plt
import numpy as np
import cartopy.crs as ccrs
from random import sample
"""
function that download each OCO - 2 data that is in .nc4 format from file "subset_OCO2_L2_ABand_V8_20180929_010345.txt"
which is list of links
for all data with date range 2015 - 09 - 01 to 2016 - 01 - 01# make sure that you have a valid user name & password by registering in https: //earthdata.nasa.gov/
#implementation based on http: //unidata.github.io/netcdf4-python/#section1"""
filespath = "C:\Users\Downloads\oco2_LtCO2_150830_B7305Br_160712072205s.nc4"
def download_oco2_nc4(filespath):
dataset = Dataset(filespath)
print("file format:"+str(dataset.file_format))
print("dimensions.keys():"+str(dataset.dimensions.keys()))
print("variables['xco2']:"+str(dataset.variables['xco2']))
XCO2 = []
LONGITUDE = []
LATITUDE = []
# XCO2
XCO2 = dataset.variables['xco2'][:]
print("->", type(XCO2))
print(dataset.variables['latitude'])
# LATITUDE
LATITUDE = dataset.variables['latitude'][:]
print(dataset.variables['longitude'])
# LONGITUDE
LONGITUDE = dataset.variables['longitude'][:]
return XCO2, LONGITUDE, LATITUDE, dataset
def mapXoco2():
fig = plt.figure(figsize = (10, 5))
ax = fig.add_subplot(1, 1, 1, projection = ccrs.Mollweide())
XCO2, LONGITUDE, LATITUDE, dataset = download_oco2_nc4(filespath)
dataset.close()
XCO2_subset = np.array(XCO2)
LONGITUDE_subset = np.array(LONGITUDE)
LATITUDE_subset = np.array(LATITUDE)
"""each of the arrays has over 80,000 of data therefore its taking to long to map, after 10,000 rows its to slow, and 10,000 isnt sufficient.
Because oco-2 gathers data from trajectory the 1st 10% or whatever precent of the data will not be a good representation of the overal data.
We must sample from X number of slices across the data.
"""
#XCO2 attempt to get ten ranges, we need to check 10 ranges therefore we need if statements not if/else
if (len(XCO2_subset)>=10000):
first_XCO2_subset=XCO2_subset[0:1000]
if (len(XCO2_subset)>=20000):
second_XCO2_subset=XCO2_subset[20000:21000]
if (len(XCO2_subset)>=30000):
third_XCO2_subset=XCO2_subset[30000:31000]
if (len(XCO2_subset)>=40000):
fourth_XCO2_subset=XCO2_subset[40000:41000]
if (len(XCO2_subset)>=50000):
fifth_XCO2_subset=XCO2_subset[50000:51000]
if (len(XCO2_subset)>=60000):
sixth_XCO2_subset=XCO2_subset[60000:61000]
if (len(XCO2_subset)>=70000):
seventh_XCO2_subset=XCO2_subset[70000:71000]
if (len(XCO2_subset)>=80000):
eight_XCO2_subset=XCO2_subset[80000:81000]
sampled_xco2 = first_XCO2_subset + second_XCO2_subset + third_XCO2_subset + fourth_XCO2_subset + fifth_XCO2_subset + sixth_XCO2_subset + seventh_XCO2_subset + eight_XCO2_subset
#LONGITUDE attempt to get ten ranges, we need to check 10 ranges therefore we need if statements not if/else
if (len(LONGITUDE_subset)>=10000):
first_LONGITUDE_subset=LONGITUDE_subset[0:1000]
if (len(LONGITUDE_subset)>=20000):
second_LONGITUDE_subset=LONGITUDE_subset[20000:21000]
if (len(LONGITUDE_subset)>=30000):
third_LONGITUDE_subset=LONGITUDE_subset[30000:31000]
if (len(LONGITUDE_subset)>=40000):
fourth_LONGITUDE_subset=LONGITUDE_subset[40000:41000]
if (len(LONGITUDE_subset)>=50000):
fifth_LONGITUDE_subset=LONGITUDE_subset[50000:51000]
if (len(LONGITUDE_subset)>=60000):
sixth_LONGITUDE_subset=LONGITUDE_subset[60000:61000]
if (len(LONGITUDE_subset)>=70000):
seventh_LONGITUDE_subset=LONGITUDE_subset[70000:71000]
if (len(LONGITUDE_subset)>=80000):
eight_LONGITUDE_subset=LONGITUDE_subset[80000:81000]
sampled_LONGITUDE = first_LONGITUDE_subset + second_LONGITUDE_subset + third_LONGITUDE_subset + fourth_LONGITUDE_subset + fifth_LONGITUDE_subset + sixth_LONGITUDE_subset + seventh_LONGITUDE_subset + eight_LONGITUDE_subset
#LATITUDE attempt to get ten ranges, we need to check 10 ranges therefore we need if statements not if/else
if (len(LATITUDE_subset)>=10000):
first_LATITUDE_subset=LATITUDE_subset[0:1000]
if (len(LATITUDE_subset)>=20000):
second_LATITUDE_subset=LATITUDE_subset[20000:21000]
if (len(LATITUDE_subset)>=30000):
third_LATITUDE_subset=LATITUDE_subset[30000:31000]
if (len(LATITUDE_subset)>=40000):
fourth_LATITUDE_subset=LATITUDE_subset[40000:41000]
if (len(LATITUDE_subset)>=50000):
fifth_LATITUDE_subset=LATITUDE_subset[50000:51000]
if (len(LATITUDE_subset)>=60000):
sixth_LATITUDE_subset=LATITUDE_subset[60000:61000]
if (len(LATITUDE_subset)>=70000):
seventh_LATITUDE_subset=LATITUDE_subset[70000:71000]
if (len(LATITUDE_subset)>=80000):
eight_LATITUDE_subset=LATITUDE_subset[80000:81000]
sampled_LATITUDE = first_LATITUDE_subset + second_LATITUDE_subset + third_LATITUDE_subset + fourth_LATITUDE_subset + fifth_LATITUDE_subset + sixth_LATITUDE_subset + seventh_LATITUDE_subset + eight_LATITUDE_subset
ax = plt.axes(projection=ccrs.Mollweide())
#plt.contourf(LONGITUDE_subset, LATITUDE_subset, XCO2_subset, 60,transform=ccrs.PlateCarree())
for long, lat, value in zip(sampled_LONGITUDE, sampled_LATITUDE,sampled_xco2):
#print(long, lat, value)
if value >= 0 and value < 370:
ax.plot(long,lat,marker='o',color='blue', markersize=1, transform=ccrs.PlateCarree())
elif value >= 370 and value < 390:
ax.plot(long,lat,marker='o',color='cyan', markersize=1, transform=ccrs.PlateCarree())
elif value >= 390 and value < 402:
ax.plot(long,lat,marker='o',color='yellow', markersize=1, transform=ccrs.PlateCarree())
elif value >= 402 and value < 410:
ax.plot(long,lat,marker='o',color='orange', markersize=1, transform=ccrs.PlateCarree())
elif value >= 410 and value < 415:
ax.plot(long,lat,marker='o',color='red', markersize=1, transform=ccrs.PlateCarree())
else:
ax.plot(long,lat,marker='o',color='brown', markersize=1, transform=ccrs.PlateCarree())
ax.coastlines()
plt.show()
mapXoco2()
输出:
文件format:NETCDF4
dimensions.keys():odict_keys(['sounding_id', 'levels', 'bands', 'vertices', 'epoch_dimension', 'source_files'])
变量['xco2']:
float32 xco2(sounding_id)
单位:ppm
long_name:XCO2
missing_value:-999999.0
评论:CO2 的列平均干空气摩尔分数(包括偏差校正)
无限维度:
当前形状 = (82776,)
填充,使用默认 _FillValue 9.969209968386869e+36
->
float32 纬度(sounding_id)
单位:degrees_north
long_name: 纬度
missing_value:-999999.0
评论:测量的中心纬度
无限维度:
当前形状 = (82776,)
填充,使用默认 _FillValue 9.969209968386869e+36
float32 经度(sounding_id)
单位:degrees_east
long_name: 经度
missing_value:-999999.0
注释:测量的中心经度
无限维度:
当前形状 = (82776,)
填充,使用默认 _FillValue 9.969209968386869e+36
1) 地图和大陆怎么了?
谢谢,感谢任何有用的帮助。
看起来你的转换参数不正确。如果您有 latitude/longitude 数据,则转换参数的值应为 ccrs.PlateCarree()
。有关详细信息,请参阅 cartopy 文档中的本指南:https://scitools.org.uk/cartopy/docs/latest/tutorials/understanding_transform.html.
我无法 运行 你的例子来验证这是解决方案。要充分利用 Stack Overflow,您应该提供一个其他人可以自己 运行 的最小工作示例。有关提示,请参阅 https://whosebug.com/help/mcve and https://whosebug.com/help/how-to-ask。
我正在尝试根据来自 NASA 的 public 数据在全球地图上绘制 CO2 水平图,并根据数据并使用 Panoply 软件将这些值描绘为(long,lat,value)地形图,这是我的情节应该是这样的:
数据为 .nc4 格式,可以正确读取,但是我无法获取数据图 我正在使用 Cartopy API 并遵循以下示例:(https://scitools.org.uk/cartopy/docs/latest/gallery/waves.html#sphx-glr-gallery-waves-py).
我也不想用底图
尝试 # 1:
参见下面的Python代码:
from netCDF4 import Dataset
import numpy as np
import matplotlib.pyplot as plt
import numpy as np
import cartopy.crs as ccrs
"""
function that download each OCO - 2 data that is in .nc4 format from file "subset_OCO2_L2_ABand_V8_20180929_010345.txt"
which is list of links
for all data with date range 2015 - 09 - 01 to 2016 - 01 - 01# make sure that you have a valid user name & password by registering in https: //earthdata.nasa.gov/
#implementation based on http: //unidata.github.io/netcdf4-python/#section1"""
def download_oco2_nc4(username, password, filespath):
filespath = "C:\Users\Desktop\oco2\oco2_LtCO2_150831_B8100r_171009083146s.nc4"
dataset = Dataset(filespath)
print(dataset.file_format)
print(dataset.dimensions.keys())
print(dataset.variables['xco2'])
XCO2 = []
LONGITUDE = []
LATITUDE = []
# XCO2
XCO2 = dataset.variables['xco2'][:]
print("->", type(XCO2))
print(dataset.variables['latitude'])
# LATITUDE
LATITUDE = dataset.variables['latitude'][:]
print(dataset.variables['longitude'])
# LONGITUDE
LONGITUDE = dataset.variables['longitude'][:]
return XCO2, LONGITUDE, LATITUDE, dataset
def mapXoco2():
fig = plt.figure(figsize = (10, 5))
ax = fig.add_subplot(1, 1, 1, projection = ccrs.Mollweide())
XCO2, LONGITUDE, LATITUDE, dataset = download_oco2_nc4(1, 2, 3)
dataset.close()
XCO2_subset = list()
counter = 0
for xco2 in XCO2:
if counter < 10:
XCO2_subset.append(xco2)
counter = counter + 1
else:
break
print("XCO2_subset="+str(len(XCO2_subset)))
counter = 0
LONGITUDE_subset = list()
for longitude in LONGITUDE:
if counter < 10:
LONGITUDE_subset.append(longitude)
counter = counter + 1
else:
break
print("LONGITUDE_subset="+str(len(LONGITUDE_subset)))
counter = 0
LATITUDE_subset = list()
for latitude in LATITUDE:
if counter < 10:
LATITUDE_subset.append(latitude)
counter = counter + 1
else:
break
print("LATITUDE_subset="+str(len(LATITUDE_subset)))
XCO2_subset = np.array(XCO2_subset)
LONGITUDE_subset = np.array(LONGITUDE_subset)
LATITUDE_subset = np.array(LATITUDE_subset)
#LONGITUDE_subset, LATITUDE_subset = np.meshgrid(LONGITUDE_subset, LATITUDE_subset)
#XCO2_subset,XCO2_subset = np.meshgrid(XCO2_subset,XCO2_subset)
ax.contourf(LONGITUDE_subset,LATITUDE_subset,XCO2_subset,
transform = ccrs.Mollweide(central_longitude=0, globe=None),
cmap = 'nipy_spectral')
ax.coastlines()
ax.set_global()
plt.show()
print(XCO2_subset)
mapXoco2()
当我注释掉这些行时:
#LONGITUDE_subset, LATITUDE_subset = np.meshgrid(LONGITUDE_subset, LATITUDE_subset)
#XCO2_subset,XCO2_subset = np.meshgrid(XCO2_subset,XCO2_subset)
我得到一个错误:
引发 TypeError("Input z must be a 2D array.")
类型错误:输入 z 必须是二维数组。
但是当我不评论这些行时:
LONGITUDE_subset, LATITUDE_subset = np.meshgrid(LONGITUDE_subset, LATITUDE_subset)
XCO2_subset,XCO2_subset = np.meshgrid(XCO2_subset,XCO2_subset
)
我得到一张空地图,我看到大陆但没有标绘值 C02 值。
我认为我对输入的 1D 到 2D 转换的解释不正确。
尝试 # 2(更新):
我没有处理 why/what API 中的这些二维变换,而是使用循环将每个点 1 乘 1 地绘制出来。问题是虽然我可以看到更多数据(我只绘制了大约 10% 的数据)我看不到 MAP/CONTINENTS 我看到白色背景上的值图???,请参见代码:
from netCDF4 import Dataset
import numpy as np
import matplotlib.pyplot as plt
import numpy as np
import cartopy.crs as ccrs
from random import sample
"""
function that download each OCO - 2 data that is in .nc4 format from file "subset_OCO2_L2_ABand_V8_20180929_010345.txt"
which is list of links
for all data with date range 2015 - 09 - 01 to 2016 - 01 - 01# make sure that you have a valid user name & password by registering in https: //earthdata.nasa.gov/
#implementation based on http: //unidata.github.io/netcdf4-python/#section1"""
filespath = "C:\Users\Downloads\oco2_LtCO2_150830_B7305Br_160712072205s.nc4"
def download_oco2_nc4(filespath):
dataset = Dataset(filespath)
print("file format:"+str(dataset.file_format))
print("dimensions.keys():"+str(dataset.dimensions.keys()))
print("variables['xco2']:"+str(dataset.variables['xco2']))
XCO2 = []
LONGITUDE = []
LATITUDE = []
# XCO2
XCO2 = dataset.variables['xco2'][:]
print("->", type(XCO2))
print(dataset.variables['latitude'])
# LATITUDE
LATITUDE = dataset.variables['latitude'][:]
print(dataset.variables['longitude'])
# LONGITUDE
LONGITUDE = dataset.variables['longitude'][:]
return XCO2, LONGITUDE, LATITUDE, dataset
def mapXoco2():
fig = plt.figure(figsize = (10, 5))
ax = fig.add_subplot(1, 1, 1, projection = ccrs.Mollweide())
XCO2, LONGITUDE, LATITUDE, dataset = download_oco2_nc4(filespath)
dataset.close()
XCO2_subset = np.array(XCO2)
LONGITUDE_subset = np.array(LONGITUDE)
LATITUDE_subset = np.array(LATITUDE)
"""each of the arrays has over 80,000 of data therefore its taking to long to map, after 10,000 rows its to slow, and 10,000 isnt sufficient.
Because oco-2 gathers data from trajectory the 1st 10% or whatever precent of the data will not be a good representation of the overal data.
We must sample from X number of slices across the data.
"""
#XCO2 attempt to get ten ranges, we need to check 10 ranges therefore we need if statements not if/else
if (len(XCO2_subset)>=10000):
first_XCO2_subset=XCO2_subset[0:1000]
if (len(XCO2_subset)>=20000):
second_XCO2_subset=XCO2_subset[20000:21000]
if (len(XCO2_subset)>=30000):
third_XCO2_subset=XCO2_subset[30000:31000]
if (len(XCO2_subset)>=40000):
fourth_XCO2_subset=XCO2_subset[40000:41000]
if (len(XCO2_subset)>=50000):
fifth_XCO2_subset=XCO2_subset[50000:51000]
if (len(XCO2_subset)>=60000):
sixth_XCO2_subset=XCO2_subset[60000:61000]
if (len(XCO2_subset)>=70000):
seventh_XCO2_subset=XCO2_subset[70000:71000]
if (len(XCO2_subset)>=80000):
eight_XCO2_subset=XCO2_subset[80000:81000]
sampled_xco2 = first_XCO2_subset + second_XCO2_subset + third_XCO2_subset + fourth_XCO2_subset + fifth_XCO2_subset + sixth_XCO2_subset + seventh_XCO2_subset + eight_XCO2_subset
#LONGITUDE attempt to get ten ranges, we need to check 10 ranges therefore we need if statements not if/else
if (len(LONGITUDE_subset)>=10000):
first_LONGITUDE_subset=LONGITUDE_subset[0:1000]
if (len(LONGITUDE_subset)>=20000):
second_LONGITUDE_subset=LONGITUDE_subset[20000:21000]
if (len(LONGITUDE_subset)>=30000):
third_LONGITUDE_subset=LONGITUDE_subset[30000:31000]
if (len(LONGITUDE_subset)>=40000):
fourth_LONGITUDE_subset=LONGITUDE_subset[40000:41000]
if (len(LONGITUDE_subset)>=50000):
fifth_LONGITUDE_subset=LONGITUDE_subset[50000:51000]
if (len(LONGITUDE_subset)>=60000):
sixth_LONGITUDE_subset=LONGITUDE_subset[60000:61000]
if (len(LONGITUDE_subset)>=70000):
seventh_LONGITUDE_subset=LONGITUDE_subset[70000:71000]
if (len(LONGITUDE_subset)>=80000):
eight_LONGITUDE_subset=LONGITUDE_subset[80000:81000]
sampled_LONGITUDE = first_LONGITUDE_subset + second_LONGITUDE_subset + third_LONGITUDE_subset + fourth_LONGITUDE_subset + fifth_LONGITUDE_subset + sixth_LONGITUDE_subset + seventh_LONGITUDE_subset + eight_LONGITUDE_subset
#LATITUDE attempt to get ten ranges, we need to check 10 ranges therefore we need if statements not if/else
if (len(LATITUDE_subset)>=10000):
first_LATITUDE_subset=LATITUDE_subset[0:1000]
if (len(LATITUDE_subset)>=20000):
second_LATITUDE_subset=LATITUDE_subset[20000:21000]
if (len(LATITUDE_subset)>=30000):
third_LATITUDE_subset=LATITUDE_subset[30000:31000]
if (len(LATITUDE_subset)>=40000):
fourth_LATITUDE_subset=LATITUDE_subset[40000:41000]
if (len(LATITUDE_subset)>=50000):
fifth_LATITUDE_subset=LATITUDE_subset[50000:51000]
if (len(LATITUDE_subset)>=60000):
sixth_LATITUDE_subset=LATITUDE_subset[60000:61000]
if (len(LATITUDE_subset)>=70000):
seventh_LATITUDE_subset=LATITUDE_subset[70000:71000]
if (len(LATITUDE_subset)>=80000):
eight_LATITUDE_subset=LATITUDE_subset[80000:81000]
sampled_LATITUDE = first_LATITUDE_subset + second_LATITUDE_subset + third_LATITUDE_subset + fourth_LATITUDE_subset + fifth_LATITUDE_subset + sixth_LATITUDE_subset + seventh_LATITUDE_subset + eight_LATITUDE_subset
ax = plt.axes(projection=ccrs.Mollweide())
#plt.contourf(LONGITUDE_subset, LATITUDE_subset, XCO2_subset, 60,transform=ccrs.PlateCarree())
for long, lat, value in zip(sampled_LONGITUDE, sampled_LATITUDE,sampled_xco2):
#print(long, lat, value)
if value >= 0 and value < 370:
ax.plot(long,lat,marker='o',color='blue', markersize=1, transform=ccrs.PlateCarree())
elif value >= 370 and value < 390:
ax.plot(long,lat,marker='o',color='cyan', markersize=1, transform=ccrs.PlateCarree())
elif value >= 390 and value < 402:
ax.plot(long,lat,marker='o',color='yellow', markersize=1, transform=ccrs.PlateCarree())
elif value >= 402 and value < 410:
ax.plot(long,lat,marker='o',color='orange', markersize=1, transform=ccrs.PlateCarree())
elif value >= 410 and value < 415:
ax.plot(long,lat,marker='o',color='red', markersize=1, transform=ccrs.PlateCarree())
else:
ax.plot(long,lat,marker='o',color='brown', markersize=1, transform=ccrs.PlateCarree())
ax.coastlines()
plt.show()
mapXoco2()
输出:
文件format:NETCDF4
dimensions.keys():odict_keys(['sounding_id', 'levels', 'bands', 'vertices', 'epoch_dimension', 'source_files'])
变量['xco2']: float32 xco2(sounding_id) 单位:ppm long_name:XCO2 missing_value:-999999.0 评论:CO2 的列平均干空气摩尔分数(包括偏差校正)
无限维度: 当前形状 = (82776,) 填充,使用默认 _FillValue 9.969209968386869e+36
-> float32 纬度(sounding_id) 单位:degrees_north long_name: 纬度 missing_value:-999999.0 评论:测量的中心纬度 无限维度: 当前形状 = (82776,) 填充,使用默认 _FillValue 9.969209968386869e+36
float32 经度(sounding_id) 单位:degrees_east long_name: 经度 missing_value:-999999.0 注释:测量的中心经度 无限维度: 当前形状 = (82776,) 填充,使用默认 _FillValue 9.969209968386869e+36
1) 地图和大陆怎么了?
谢谢,感谢任何有用的帮助。
看起来你的转换参数不正确。如果您有 latitude/longitude 数据,则转换参数的值应为 ccrs.PlateCarree()
。有关详细信息,请参阅 cartopy 文档中的本指南:https://scitools.org.uk/cartopy/docs/latest/tutorials/understanding_transform.html.
我无法 运行 你的例子来验证这是解决方案。要充分利用 Stack Overflow,您应该提供一个其他人可以自己 运行 的最小工作示例。有关提示,请参阅 https://whosebug.com/help/mcve and https://whosebug.com/help/how-to-ask。