ggplot 无法使用 facet_wrap 和组美学绘制平滑的 gam

ggplot fails to draw smooth gam using facet_wrap and group asthetic

我正在尝试使用具有群体美学的 ggplot 以及 facet_wrap 绘制多面板和多线图。但是,当一组数据点太少时,geom_smooth 对构面图中的所有行都失败。

plot1 <- ggplot(data=df1, 
                aes(x=Year, y=Mean, group=Group2, linetype=Group2, shape=Group2)) +  
  geom_errorbar(aes(ymin=Mean-SE, ymax=Mean+SE), width=0.2) +  
  geom_smooth(method = "gam", se=F, formula = y ~ s(x, k=3), size = 1, colour="black") + 
  geom_point(position=pd, size=2, fill="white") +  
  scale_x_continuous(limits=c(min(df1$Year-0.1), max(df1$Year+0.1)), 
                     breaks=seq(min(df1$Year),max(df1$Year),5)) +  
  facet_wrap(~Group1, scales = "free", ncol=2) +  
  theme_bw() + 
  theme(axis.text.x = element_text(),
        axis.title.x = element_blank(), 
        strip.background = element_blank(), 
        axis.line.x = element_line(colour="black"),
        axis.line.y = element_line(colour="black"), 
        panel.grid.minor = element_blank(), 
        panel.grid.major = element_blank(),
        panel.border = element_blank(), 
        panel.background = element_blank(),
        legend.position="top",
        legend.title = element_blank())
plot(plot1)

制作剧情如下。这只是为了使它更容易的摘要数据。就好像错误阻止了 ggplot 计算该特定方面的系列平滑。

数据

Year    Group1      Group2      Mean        SE
2011    Factor A    Factor C    30.62089116 3.672624771
2011    Factor A    Factor D    54.99066324 2.822405771
2011    Factor B    Factor C    30.48859003 3.748388489
2011    Factor B    Factor D    45.70410611 4.284244405
2017    Factor A    Factor C    33.68256601 4.030964172
2017    Factor A    Factor D    53.43496462 4.687042033
2017    Factor B    Factor C    23.08799875 5.17753488
2001    Factor A    Factor C    23.79166667 2.837795432
2001    Factor A    Factor D    23.75925926 3.688185081
2001    Factor B    Factor C    29.05555556 4.08597798
2001    Factor B    Factor D    28.13333333 7.877429079
2008    Factor A    Factor C    23.3        2.383624691
2008    Factor A    Factor D    28.83333333 2.750959429
2008    Factor B    Factor C    34.01666667 5.340999698

并绘制

很明显,有足够的数据可以为 factorB 组中的 factorC 画一条平滑线。任何的想法?

我认为这很棘手。在对 StatSmooth 进行了一些测试和阅读 current GH code 之后,我将我的发现总结如下:

观察

  1. geom_smooth() 无法在绘图面板中绘制 all 平滑线,如果 any 数据组太少method = "gam" AND formula = y ~ s(x, k = 3);
  2. 的观察结果
  3. 如果绘图分为多个面板,则只有包含违规数据组的面板受到影响;
  4. formula = y ~ x(即默认公式)不会发生这种情况;
  5. 使用默认公式的某些其他方法(例如 "lm""glm")不会发生这种情况,但 会在 [=26= 时发生];
  6. 如果数据组只有 1 个观察值,则不会发生这种情况。

我们可以用一些简化的代码重现上面的内容:

# create sample data
n <- 30
set.seed(567)
df.1 <- data.frame( # there is only 1 observation for group == B
  x = rnorm(n), y = rnorm(n),
  group = c(rep("A", n - 1), rep("B", 1)),
  facet = sample(c("X", "Y"), size = n, replace = TRUE))    
set.seed(567)
df.2 <- data.frame( # there are 2 observations for group == B
  x = rnorm(n), y = rnorm(n),
  group = c(rep("A", n - 2), rep("B", 2)),
  facet = sample(c("X", "Y"), size = n, replace = TRUE))

# create base plot
p <- ggplot(df.2, aes(x = x, y = y, color = group)) + 
  geom_point() + theme_bw()

# problem: no smoothed line at all in the entire plot
p + geom_smooth(method = "gam", formula = y ~ s(x, k = 3))

# problem: no smoothed line in the affected panel
p + facet_wrap(~ facet) + 
  geom_smooth(method = "gam", formula = y ~ s(x, k = 3))

# no problem with default formula: smoothed lines in both facet panels
p + facet_wrap(~ facet) + geom_smooth(method = "gam")

# no problem with lm / glm, but problem with loess
p + facet_wrap(~ facet) + geom_smooth(method = "lm")
p + facet_wrap(~ facet) + geom_smooth(method = "glm")
p + facet_wrap(~ facet) + geom_smooth(method = "loess")

# no problem if there's only one observation (instead of two)
p %+% df.1 + geom_smooth(method = "gam", formula = y ~ s(x, k = 3))
p %+% df.1 + facet_wrap(~ facet) + 
  geom_smooth(method = "gam", formula = y ~ s(x, k = 3))

观察 1 和 2 的解释:

我认为问题出在 StatSmoothcompute_group 函数中的最后两行。第一行为 aes(group = ...) 映射指定的每个组在数据帧上调用模型函数(例如 stats::glmstats::loessmgcv::gam),而第二行调用其中一个stats::predict() 周围的包装器以获得模型的平滑值(和置信区间,如果适用)。

model <- do.call(method, c(base.args, method.args))
predictdf(model, xseq, se, level)

当参数 method = "gam", formula = y ~ s(x, k = 3) 用于只有 2 个观测值的数据帧时,会发生以下情况:

model <- do.call(mgcv::gam,
                 args = list(formula = y ~ s(x, k = 3),
                             data = df.2 %>% filter(group == "B" & facet == "X")))

Error in smooth.construct.tp.smooth.spec(object, dk$data, dk$knots) : A term has fewer unique covariate combinations than specified maximum degrees of freedom

model,定义为接受 do.call(...) 结果的对象甚至还没有被创建。最后一行代码 predictdf(...) 将抛出错误,因为 model 不存在。 没有分面,这会影响StatSmooth完成的所有计算,并且geom_smooth()接收不到可用于在其图层中创建任何geom的数据。 使用分面,上述计算是针对每个分面单独完成的,因此只有数据有问题的分面受到影响。

观察 3 和 4 的解释:

除此之外,如果我们不指定公式来替换默认的 y ~ x,我们将从 gam / lm / glm,可以将其传递给 ggplot2 的未导出 predictdf 函数,用于预测值的数据帧:

model <- do.call(mgcv::gam, # or stats::lm, stats::glm
                 args = list(formula = y ~ x,
                             data = df.2 %>% filter(group == "B" & facet == "X")))

result <- ggplot2:::predictdf(
  model, 
  xseq = seq(-2, 1.5, length.out = 80), # pseudo range of x-axis values
  se = FALSE, level = 0.95) # default SE / level parameters

loess 也会 return 一个有效的对象,尽管有很多警告。但是,将其传递给 predictdf 将导致错误:

model <- do.call(stats::loess,
                 args = list(formula = y ~ x,
                             data = df.2 %>% filter(group == "B" & facet == "X")))

result <- ggplot2:::predictdf(
  model, 
  xseq = seq(-2, 1.5, length.out = 80), # pseudo range of x-axis values
  se = FALSE, level = 0.95) # default SE / level parameters

Error in predLoess(object$y, object$x, newx = if (is.null(newdata)) object$x else if (is.data.frame(newdata)) as.matrix(model.frame(delete.response(terms(object)), : NA/NaN/Inf in foreign function call (arg 5)

观察 5 的解释:

StatSmoothcompute_group 函数开头如下:

if (length(unique(data$x)) < 2) {
      # Not enough data to perform fit
      return(data.frame())
    }

换句话说,如果指定组中只有 1 个观察值,StatSmooth 立即 return 一个空白数据框。因此,它永远不会到达代码的后续部分以抛出任何错误。

解决方法:

查明事情偏离轨道的地方后,我们可以对 compute_group 代码进行调整(参见注释和注释掉的部分):

new.compute_group <- function(
  data, scales, method = "auto", formula = y~x, se = TRUE, n = 80, span = 0.75, 
  fullrange = FALSE, xseq = NULL, level = 0.95, method.args = list(), na.rm = FALSE) {
  if (length(unique(data$x)) < 2) return(data.frame()) 
  if (is.null(data$weight)) data$weight <- 1
  if (is.null(xseq)) {
    if (is.integer(data$x)) {
      if (fullrange) {
        xseq <- scales$x$dimension()
      } else {
        xseq <- sort(unique(data$x))
      }
    } else {
      if (fullrange) {
        range <- scales$x$dimension()
      } else {
        range <- range(data$x, na.rm = TRUE)
      }
      xseq <- seq(range[1], range[2], length.out = n)
    }
  }
  if (identical(method, "loess")) method.args$span <- span 
  if (is.character(method)) method <- match.fun(method)
  base.args <- list(quote(formula), data = quote(data), weights = quote(weight))

  # if modelling fails, return empty data frame
  # model <- do.call(method, c(base.args, method.args))
  model <- try(do.call(method, c(base.args, method.args)))
  if(inherits(model, "try-error")) return(data.frame())

  # if modelling didn't fail, but prediction returns NA,
  # also return empty data frame
  # predictdf(model, xseq, se, level)
  pred <- try(ggplot2:::predictdf(model, xseq, se, level))
  if(inherits(pred, "try-error")) return(data.frame())
  return(pred)
}

定义一个使用此版本的新统计层:

# same as stat_smooth() except that it uses stat = StatSmooth2, rather 
# than StatSmooth
stat_smooth_local <- function(
  mapping = NULL, data = NULL, geom = "smooth", position = "identity", ...,
  method = "auto", formula = y ~ x, se = TRUE, n = 80, span = 0.75,
  fullrange = FALSE, level = 0.95, method.args = list(), na.rm = FALSE,
  show.legend = NA, inherit.aes = TRUE) {
  layer(
    data = data, mapping = mapping, stat = StatSmooth2,
    geom = geom, position = position, show.legend = show.legend,
    inherit.aes = inherit.aes,
    params = list(
      method = method, formula = formula, se = se, n = n,
      fullrange = fullrange, level = level, na.rm = na.rm,
      method.args = method.args, span = span, ...
    )
  )
}

# inherit from StatSmooth
StatSmooth2 <- ggproto(
  "StatSmooth2", ggplot2::StatSmooth,
  compute_group = new.compute_group
)

结果:

我们可以 运行 通过与之前相同的案例,将 geom_smooth() 替换为 stat_smooth_local(),并验证平滑的 geom 层在每个案例中都是可见的(注意有些仍然会导致错误消息):

# problem resolved: smoothed line for applicable group in the entire plot
p + stat_smooth_local(method = "gam", formula = y ~ s(x, k = 3))

# problem resolved: smoothed line for applicable group in the affected panel
p + facet_wrap(~ facet) + 
  stat_smooth_local(method = "gam", formula = y ~ s(x, k = 3))

# still no problem with default formula
p + facet_wrap(~ facet) + stat_smooth_local(method = "gam")

# still no problem with lm / glm; problem resolved for loess
p + facet_wrap(~ facet) + stat_smooth_local(method = "lm")
p + facet_wrap(~ facet) + stat_smooth_local(method = "glm")
p + facet_grid(~ facet) + stat_smooth_local(method = "loess")

# still no problem if there's only one observation (instead of two)
p %+% df.1 + stat_smooth_local(method = "gam", formula = y ~ s(x, k = 3))
p %+% df.1 + facet_wrap(~ facet) + 
  stat_smooth_local(method = "gam", formula = y ~ s(x, k = 3))

# showing one pair of contrasts here
cowplot::plot_grid(
  p + facet_wrap(~ facet) + ggtitle("Before") +
    geom_smooth(method = "gam", formula = y ~ s(x, k = 3)),
  p + facet_wrap(~ facet) + ggtitle("After") +
    stat_smooth_local(method = "gam", formula = y ~ s(x, k = 3)),
  nrow = 2
)

处理这个问题的一个非常简单的方法是在传递给 geom_smooth:

的数据中将导致问题的行子集化
library(tidyverse)

df1 <- data_frame(
    Year = c(2011L, 2011L, 2011L, 2011L, 2017L, 2017L, 2017L, 2001L, 2001L, 2001L, 2001L, 2008L, 2008L, 2008L),
    Group1 = c("Factor A", "Factor A", "Factor B", "Factor B", "Factor A", "Factor A", "Factor B", "Factor A", "Factor A", "Factor B", "Factor B", "Factor A", "Factor A", "Factor B"),
    Group2 = c("Factor C", "Factor D", "Factor C", "Factor D", "Factor C", "Factor D", "Factor C", "Factor C", "Factor D", "Factor C", "Factor D", "Factor C", "Factor D", "Factor C"),
    Mean = c(30.62089116, 54.99066324, 30.48859003, 45.70410611, 33.68256601, 53.43496462, 23.08799875, 23.79166667, 23.75925926, 29.05555556, 28.13333333, 23.3, 28.83333333, 34.01666667),
    SE = c(3.672624771, 2.822405771, 3.748388489, 4.284244405, 4.030964172, 4.687042033, 5.17753488, 2.837795432, 3.688185081, 4.08597798, 7.877429079, 2.383624691, 2.750959429, 5.340999698)
)

ggplot(df1, aes(Year, Mean, color = Group2)) +  
    geom_errorbar(aes(ymin = Mean - SE, ymax = Mean + SE)) +  
    geom_smooth(data = df1 %>% group_by(Group1, Group2) %>% filter(n() > 2),    # subset
                method = "gam", formula = y ~ s(x, k=3)) + 
    geom_point() + 
    facet_wrap(~Group1)