使用 Python Library any python library 生成有向图

Generate a directed Graph using Python Library any python library

我正在 Python 中实现 GeeksForGeeks 的 Bellman ford 算法。我想使用一些库(如 pyplot 或 networkx 或类似的东西)生成图表(图表形式而不是字典类型 - 这很容易)。我希望图表 UI 包含节点、边和相应的成本。

from collections import defaultdict 

#Class to represent a graph 
class Graph: 

    def __init__(self,vertices): 
        self.V= vertices #No. of vertices 
        self.graph = [] # default dictionary to store graph 

    # function to add an edge to graph 
    def addEdge(self,u,v,w): 
        self.graph.append([u, v, w]) 

    # utility function used to print the solution 
    def printArr(self, dist): 
        print("Vertex   Distance from Source") 
        for i in range(self.V): 
            print("%d \t\t %d" % (i, dist[i])) 

    # The main function that finds shortest distances from src to 
    # all other vertices using Bellman-Ford algorithm.  The function 
    # also detects negative weight cycle 
    def BellmanFord(self, src): 

        # Step 1: Initialize distances from src to all other vertices 
        # as INFINITE 
        dist = [float("Inf")] * self.V 
        dist[src] = 0 


        # Step 2: Relax all edges |V| - 1 times. A simple shortest  
        # path from src to any other vertex can have at-most |V| - 1  
        # edges 
        for i in range(self.V - 1): 
            # Update dist value and parent index of the adjacent vertices of 
            # the picked vertex. Consider only those vertices which are still in 
            # queue 
            for u, v, w in self.graph: 
                if dist[u] != float("Inf") and dist[u] + w < dist[v]: 
                        dist[v] = dist[u] + w 

        # Step 3: check for negative-weight cycles.  The above step  
        # guarantees shortest distances if graph doesn't contain  
        # negative weight cycle.  If we get a shorter path, then there 
        # is a cycle. 

        for u, v, w in self.graph: 
                if dist[u] != float("Inf") and dist[u] + w < dist[v]: 
                        print "Graph contains negative weight cycle"
                        return

        # print all distance 
        self.printArr(dist) 

g = Graph(5) 
g.addEdge(0, 1, -1) 
g.addEdge(0, 2, 4) 
g.addEdge(1, 2, 3) 
g.addEdge(1, 3, 2) 
g.addEdge(1, 4, 2) 
g.addEdge(3, 2, 5) 
g.addEdge(3, 1, 1) 
g.addEdge(4, 3, -3) 

我想要在终端或单独文件中的图形是(基于上面的代码):

如果您检查此 tutorial for networkx,您会发现创建有向图以及绘制它是多么容易。

差不多,有向图或简单图都是一样的(API 明智),绘图也很简单,使用 Matplotlib 生成它。

你可以制作一个 Tk 应用程序,它允许你手动输入节点和边,并将它们存储在列表框中,并绘制一个图形,在这个函数中,这不会是拖放,但是,它仍然可以帮助您即时可视化图表。

和这个 Matplotlib tutorial,将告诉您如何将它嵌入到 TK 应用程序中。

ekiim 的 link 文档非常有用。这是我为绘制图形所做的代码:

import networkx as nx  
import matplotlib.pyplot as plt
G=nx.DiGraph()
G.add_node(0),G.add_node(1),G.add_node(2),G.add_node(3),G.add_node(4)
G.add_edge(0, 1),G.add_edge(1, 2),G.add_edge(0, 2),G.add_edge(1, 4),G.add_edge(1, 3),G.add_edge(3, 2),G.add_edge(3,1),G.add_edge(4,3)
nx.draw(G, with_labels=True, font_weight='bold')
plt.show()

此代码免费打印有向图。我尝试按成本打印,但输出结果因成本混乱而严重失真。一些成本写在空白处,而边缘只有一两个。因此,如果有人知道实施它,那将非常有用。