IndexError: only integers, slices (`:`), ellipsis (`...`), numpy.newaxis (`None`) and integer or boolean arrays are valid indices"

IndexError: only integers, slices (`:`), ellipsis (`...`), numpy.newaxis (`None`) and integer or boolean arrays are valid indices"

我正在尝试 运行 W2V 算法。我发现索引错误并且不确定我哪里出错了。这是错误:

IndexError: only integers, slices (:), ellipsis (...), numpy.newaxis (None) and integer or boolean arrays are valid indices

这是代码:

    def makeFeatureVec(words, model, num_features):
# Function to average all of the word vectors in a given
# paragraph
#
# Pre-initialize an empty numpy array (for speed)
featureVec = np.zeros((num_features,),dtype="float32")
#
nwords = 0.
# 
# Index2word is a list that contains the names of the words in 
# the model's vocabulary. Convert it to a set, for speed 
index2word_set = set(model.wv.index2word)
#
# Loop over each word in the review and, if it is in the model's
# vocaublary, add its feature vector to the total
for word in words:
    if word in index2word_set: 
        nwords = nwords + 1.
        featureVec = np.add(featureVec,model[word])
# 
# Divide the result by the number of words to get the average
featureVec = np.true_divide(featureVec,nwords)
return featureVec

    def getAvgFeatureVecs(reviews,model,num_features):
# Given a set of reviews (each one a list of words), calculate 
# the average feature vector for each one and return a 2D numpy array 
# 
# Initialize a counter
counter = 0.
# 
# Preallocate a 2D numpy array, for speed
reviewFeatureVecs = np.zeros((len(reviews),num_features),dtype="float32")
# 
# Loop through the reviews
for review in reviews:
   #
   # Print a status message every 1000th review
    if counter%1000. == 0.:
        print ("Review %d of %d" % (counter, len(reviews)))
   # 
   # Call the function (defined above) that makes average feature vectors
    reviewFeatureVecs[counter] = makeFeatureVec(review, model,num_features)
   #
   # Increment the counter
    counter = counter + 1.
return reviewFeatureVecs

这段代码来自 Bag-of-Words-Meets-Bags-of-Popcorn-Kaggle。我不确定错误在哪里。我认为 np.divide 是一个错误。我正在研究 windows

counter = counter + 1.

应该是

counter = counter + 1(注意圆点)或 counter += 1

点使 counter 成为浮点数(因为 1. 等同于 1.0)并且浮点数不能用作索引。

切片变量必须是整数。 (用整数替换浮点值,例如:0. 到 0)

1)    nwords = 0.

2)   # Print a status message every 1000th review
        if counter%1000. == 0.: 
            print ("Review %d of %d" % (counter, len(reviews)))

3)   # Increment the counter
         counter = counter + 1.
      return reviewFeatureVecs