从特征到单词 python("reverse" 词袋)

From featurers to words python ("reverse" bag of words)

我使用 sklearn 在 Python 中创建了一个包含 200 个特征的 BOW,这些特征很容易提取。但是,我该如何扭转呢?也就是说,从一个有 200 个 0 或 1 的向量到相应的词?由于词汇表是一本字典,因此没有排序,我不确定特征列表中的每个元素对应于哪个词。另外,如果我的 200 维向量中的第一个元素对应于字典中的第一个单词,那么我如何通过索引从字典中提取单词?

BOW是这样制作的

vec = CountVectorizer(stop_words = sw, strip_accents="unicode", analyzer = "word", max_features = 200)
features = vec.fit_transform(data.loc[:,"description"]).todense()

因此"features"是一个矩阵(n,200)矩阵(n是句子的个数)

我不太确定你要做什么,但你似乎只是想弄清楚哪一列代表哪个词。为此,有方便的 get_feature_names 参数。

让我们看看docs中提供的示例语料库:

corpus = [
     'This is the first document.',
     'This document is the second document.',
     'And this is the third one.',
     'Is this the first document?' ]

# Put into a dataframe
data = pd.DataFrame(corpus,columns=['description'])
# Take a look:
>>> data
                             description
0            This is the first document.
1  This document is the second document.
2             And this is the third one.
3            Is this the first document?

# Initialize CountVectorizer (you can put in your arguments, but for the sake of example, I'm keeping it simple):
vec = CountVectorizer()

# Fit it as you had before:
features = vec.fit_transform(data.loc[:,"description"]).todense()

>>> features
matrix([[0, 1, 1, 1, 0, 0, 1, 0, 1],
        [0, 2, 0, 1, 0, 1, 1, 0, 1],
        [1, 0, 0, 1, 1, 0, 1, 1, 1],
        [0, 1, 1, 1, 0, 0, 1, 0, 1]], dtype=int64)

要查看哪个列代表哪个单词,请使用 get_feature_names:

>>> vec.get_feature_names()
['and', 'document', 'first', 'is', 'one', 'second', 'the', 'third', 'this']

所以您的第一列是 and,第二列是 document,依此类推。为了便于阅读,您可以将其粘贴在数据框中:

>>> pd.DataFrame(features, columns = vec.get_feature_names())
   and  document  first  is  one  second  the  third  this
0    0         1      1   1    0       0    1      0     1
1    0         2      0   1    0       1    1      0     1
2    1         0      0   1    1       0    1      1     1
3    0         1      1   1    0       0    1      0     1