可折叠和幺半群类型

Foldable and Monoid types

我正在尝试编写函数,使用幺半群和 Foldable 对列表中的所有元素进行加法和乘法运算。我设置了一些我认为有效的代码:

data Rose a = a :> [Rose a]
    deriving (Eq, Show)

instance Functor Rose where
    fmap f rose@(a:>b) = (f a :> map (fmap f) b) 

class Monoid a where
    mempty ::           a
    (<>)   :: a -> a -> a

instance Monoid [a] where
    mempty = []
    (<>)   = (++)

newtype Sum     a = Sum     { unSum     :: a } deriving (Eq, Show)
newtype Product a = Product { unProduct :: a } deriving (Eq, Show)

instance Num a => Monoid (Sum a) where
    mempty           = Sum 0
    Sum n1 <> Sum n2 = Sum (n1 + n2)

instance Num a => Monoid (Product a) where
    mempty                   = Product 1
    Product n1 <> Product n2 = Product (n1 * n2)

class Functor f => Foldable f where
    fold    :: Monoid m =>             f m -> m
    foldMap :: Monoid m => (a -> m) -> f a -> m
    foldMap f a = fold (fmap f a)

instance Foldable [] where
    fold = foldr (<>) mempty

instance Foldable Rose where
    fold (a:>[]) = a <> mempty
    fold (a:>b)  = a <> (fold (map fold b))

然后在定义了不同的 Foldable 实例以及 Sum 和 Product 类型之后,我想定义两个函数,分别将数据结构中的元素相加相乘,但这会产生我不知道如何解释的错误,我必须承认我的猜测比实际逻辑更多,因此欢迎对您的答案进行全面解释。

fsum, fproduct :: (Foldable f, Num a) => f a -> a
fsum b     = foldMap Sum b
fproduct b = foldMap Product b

错误:

Assignment3.hs:68:14: error:
    * Occurs check: cannot construct the infinite type: a ~ Sum a
    * In the expression: foldMap Sum b
      In an equation for `fsum': fsum b = foldMap Sum b
    * Relevant bindings include
        b :: f a (bound at Assignment3.hs:68:6)
        fsum :: f a -> a (bound at Assignment3.hs:68:1)
   |
68 | fsum b     = foldMap Sum b
   |              ^^^^^^^^^^^^^

Assignment3.hs:69:14: error:
    * Occurs check: cannot construct the infinite type: a ~ Product a
    * In the expression: foldMap Product b
      In an equation for `fproduct': fproduct b = foldMap Product b
    * Relevant bindings include
        b :: f a (bound at Assignment3.hs:69:10)
        fproduct :: f a -> a (bound at Assignment3.hs:69:1)
   |
69 | fproduct b = foldMap Product b
   |              ^^^^^^^^^^^^^^^^^

如果您在 foldMap 中使用 Sum(或 Product),您将首先 map [=14] 中的项目=] 到 Sums(或 Products)。因此 fsum 的结果将 - 就像你定义的那样 - 是 Sum a,而不是 a:

fsum :: (Foldable f, Num a) => f a -> <b>Sum a</b>
fsum b = foldMap Sum b

为了检索包装在 Sum 构造函数中的值,您可以使用 unSum :: Sum a -> a getter:

获取它
fsum :: (Foldable f, Num a) => f a -> <b>a</b>
fsum b = <b>unSum (</b>foldMap Sum b<b>)</b>

或在 eta 减少后:

fsum :: (Foldable f, Num a) => f a -> a
fsum = unSum . foldMap Sum

对于 Product

也应该发生同样的情况