Swift - 特定长度的子数组
Swift - Subarrays of specific length
我有一个数组可以说 [1, 2, 3, 4]
。我必须检查一个元素或元素的任何组合是否总和为特定数字。
例子
5
、1 + 4 = 5
和 2 + 3 = 5
.
6
、1 + 2 + 3 = 6
和 2 + 4 = 6
可能是创建数组的幂集 ,然后循环遍历它。但这不是一个好主意,因为如果元素的数量,即 n
增加,幂集将变得内存很大。就此而言,更好的方法是创建特定长度的 subsets/subarrays 并逐个遍历它们。
假设k
是子数组的长度,那么
k = 2
应该给我[[1, 2], [1, 3], [1, 4], [2, 3], [2, 4], [3, 4]]
k = 3
应该给我[[1, 2, 3], [1, 2, 4], [2, 3, 4]]
现在的问题是,我将如何创建如上所述特定长度的 subarrays/subsets?
这是一种子集和问题。
对于正整数,可以使用复杂度为 O(length * sum)
的动态规划求解
创建长度为 (sum + 1)
的数组 A,用零填充,设置 A[0] = 1
对于每个源值 v
遍历数组 A
从 A[sum]
向下到 A[v]
,检查 A[i-v]
是否非零。如果是,请用 A[i-v] + 1
标记 A[i]
单元格(到达此单元格的步数(值))。
如果A[sum]
是非零的,并且毕竟包含了所需步数的组合,这个总和可能是由数组元素组成的。
如果您还需要跟踪元素,请在 A[i]
单元格中添加它们的值以检索子集。
This a variant of subset sum problem, or more generally, the Knapsack problem. The following solution supposes that:
- All elements of the initial array are strictly positive,
- The initial array may contain repeating elements,
- If a sum can't be reached, the output is an empty array.
Let's starts with an example: let's create a dynamic table in which we'll try to find all the ways to get 5
by adding elements from [1, 2, 3, 4]
:
In this table, the rows represent the elements of the array, in an ascending order, plus 0
. The columns go from 0
to the sum 5
.
In each cell, we ask ourselves, can we get to the title of this column, by adding one or more of the titles of the current and previous rows.
The number of solutions is the count of cells having true
in them. In this case, two solutions:
1)
The green cell is true
, so the current line is the last element from the solution. In this case, 3
is part of the solution. So the problem of finding a subarray which sum is 5, becomes finding a subarray which sum is 5 - 3
. Which is 2
. This is represented by the purple arrow 1
: Go five columns to the left, and 1 row up.
In arrow 2
, we look for the subset that has made it possible to have a partial sum of 2
. In this case, we get two thanks to the 2
element. So following arrow 2
we go one row up, and two to the left.
With arrow 3
we reach the first cell in the first column, corresponding to 5 - 3 - 2
, which is 0
.
2)
Another path we could take starts from the red cell:
As you can see, the problem of making 5 out of [1, 2, 3, 4]
, becomes a new smaller problem of making 1 from [1, 2, 3]
, and then 1 out of [1, 2]
, and finally 1 out of `1.
Let's create and fill the dynamic table:
var dynamicTable: [[Bool]] =
Array(repeating: Array(repeating: false, count: sum + 1),
count: array.count + 1)
//All of the elements of the first column are true
//since we can always make a zero sum out of not elements
for i in 0...array.count {
dynamicTable[i][0] = true
}
for row in 1...array.count {
for column in 1...sum {
if column < array[row - 1] {
dynamicTable[row][column] = dynamicTable[row - 1][column]
} else {
if dynamicTable[row - 1][column] {
dynamicTable[row][column] = true
} else {
dynamicTable[row][column] = dynamicTable[row - 1][column - array[row - 1]]
}
}
}
}
Let's find all the paths leading to the sum:
var solutions = [[Int]]()
func getSubArraysWithTheSum(arr: [Int], row: Int, currentSum: Int, currentSolution: [Int]) {
//The following block will be executed when
//we reach the first cell in the first column
if row == 0,
currentSum == 0
{
solutions.append(currentSolution)
//notice the return to exit the scope
return
}
//The following block will be executed if
//the current cell is NOT used to reach the sum
if dynamicTable[row - 1][currentSum]
{
getSubArraysWithTheSum(arr: arr,
row: row - 1,
currentSum: currentSum,
currentSolution: currentSolution)
}
//The following block will be executed if
//the current cell IS used to reach the sum
if currentSum >= arr[row - 1],
dynamicTable[row - 1][currentSum - arr[row - 1]]
{
getSubArraysWithTheSum(arr: arr,
row: row - 1,
currentSum: currentSum - arr[row - 1],
currentSolution: currentSolution + [arr[row - 1]])
}
}
The whole function looks like this:
func getSubArrays(from array: [Int], withSum sum: Int) -> [[Int]] {
guard array.allSatisfy({ [=12=] > 0 }) else {
fatalError("All the elements of the array must be strictly positive")
}
guard array.count > 0, sum > 0 else {
return []
}
var solutions = [[Int]]()
var dynamicTable: [[Bool]] =
Array(repeating: Array(repeating: false, count: sum + 1),
count: array.count + 1)
//All of the elements of the first column are true
//since we can always make a zero sum out of not elements
for i in 0...array.count {
dynamicTable[i][0] = true
}
for row in 1...array.count {
for column in 1...sum {
if column < array[row - 1] {
dynamicTable[row][column] = dynamicTable[row - 1][column]
} else {
if dynamicTable[row - 1][column] {
dynamicTable[row][column] = true
} else {
dynamicTable[row][column] = dynamicTable[row - 1][column - array[row - 1]]
}
}
}
}
func getSubArraysWithTheSum(arr: [Int], row: Int, currentSum: Int, currentSolution: [Int]) {
//The following block will be executed when
//we reach the first cell in the first column
if row == 0,
currentSum == 0
{
solutions.append(currentSolution)
return
}
//The following block will be executed if
//the current cell is NOT used to reach the sum
if dynamicTable[row - 1][currentSum]
{
getSubArraysWithTheSum(arr: arr,
row: row - 1,
currentSum: currentSum,
currentSolution: currentSolution)
}
//The following block will be executed if
//the current cell IS used to reach the sum
if currentSum >= arr[row - 1],
dynamicTable[row - 1][currentSum - arr[row - 1]]
{
getSubArraysWithTheSum(arr: arr,
row: row - 1,
currentSum: currentSum - arr[row - 1],
currentSolution: currentSolution + [arr[row - 1]])
}
}
getSubArraysWithTheSum(arr: array, row: array.count , currentSum: sum, currentSolution: [])
return solutions
}
Here are some test cases:
getSubArrays(from: [3, 1, 4, 2], withSum: 5) //[[3, 2], [4, 1]]
getSubArrays(from: [1, 2, 2, 4], withSum: 3) //[[2, 1], [2, 1]]
getSubArrays(from: [7, 3, 4, 5, 6, 1], withSum: 9) //[[5, 3, 1], [5, 4], [6, 3]]
getSubArrays(from: [3], withSum: 3) //[[3]]
getSubArrays(from: [5], withSum: 10) //[]
getSubArrays(from: [1, 2], withSum: 0) //[]
getSubArrays(from: [], withSum: 4) //[]
This solution has been inspired by Sumit Ghosh's contribution here. A thorough explanation of how the dynamic table is constructed can be found in this video.
我有一个数组可以说 [1, 2, 3, 4]
。我必须检查一个元素或元素的任何组合是否总和为特定数字。
例子
5
、1 + 4 = 5
和2 + 3 = 5
.6
、1 + 2 + 3 = 6
和2 + 4 = 6
可能是创建数组的幂集 n
增加,幂集将变得内存很大。就此而言,更好的方法是创建特定长度的 subsets/subarrays 并逐个遍历它们。
假设k
是子数组的长度,那么
k = 2
应该给我[[1, 2], [1, 3], [1, 4], [2, 3], [2, 4], [3, 4]]
k = 3
应该给我[[1, 2, 3], [1, 2, 4], [2, 3, 4]]
现在的问题是,我将如何创建如上所述特定长度的 subarrays/subsets?
这是一种子集和问题。
对于正整数,可以使用复杂度为 O(length * sum)
创建长度为 (sum + 1)
的数组 A,用零填充,设置 A[0] = 1
对于每个源值 v
遍历数组 A
从 A[sum]
向下到 A[v]
,检查 A[i-v]
是否非零。如果是,请用 A[i-v] + 1
标记 A[i]
单元格(到达此单元格的步数(值))。
如果A[sum]
是非零的,并且毕竟包含了所需步数的组合,这个总和可能是由数组元素组成的。
如果您还需要跟踪元素,请在 A[i]
单元格中添加它们的值以检索子集。
This a variant of subset sum problem, or more generally, the Knapsack problem. The following solution supposes that:
- All elements of the initial array are strictly positive,
- The initial array may contain repeating elements,
- If a sum can't be reached, the output is an empty array.
Let's starts with an example: let's create a dynamic table in which we'll try to find all the ways to get 5
by adding elements from [1, 2, 3, 4]
:
In this table, the rows represent the elements of the array, in an ascending order, plus 0
. The columns go from 0
to the sum 5
.
In each cell, we ask ourselves, can we get to the title of this column, by adding one or more of the titles of the current and previous rows.
The number of solutions is the count of cells having true
in them. In this case, two solutions:
1)
The green cell is true
, so the current line is the last element from the solution. In this case, 3
is part of the solution. So the problem of finding a subarray which sum is 5, becomes finding a subarray which sum is 5 - 3
. Which is 2
. This is represented by the purple arrow 1
: Go five columns to the left, and 1 row up.
In arrow 2
, we look for the subset that has made it possible to have a partial sum of 2
. In this case, we get two thanks to the 2
element. So following arrow 2
we go one row up, and two to the left.
With arrow 3
we reach the first cell in the first column, corresponding to 5 - 3 - 2
, which is 0
.
2)
Another path we could take starts from the red cell:
As you can see, the problem of making 5 out of [1, 2, 3, 4]
, becomes a new smaller problem of making 1 from [1, 2, 3]
, and then 1 out of [1, 2]
, and finally 1 out of `1.
Let's create and fill the dynamic table:
var dynamicTable: [[Bool]] =
Array(repeating: Array(repeating: false, count: sum + 1),
count: array.count + 1)
//All of the elements of the first column are true
//since we can always make a zero sum out of not elements
for i in 0...array.count {
dynamicTable[i][0] = true
}
for row in 1...array.count {
for column in 1...sum {
if column < array[row - 1] {
dynamicTable[row][column] = dynamicTable[row - 1][column]
} else {
if dynamicTable[row - 1][column] {
dynamicTable[row][column] = true
} else {
dynamicTable[row][column] = dynamicTable[row - 1][column - array[row - 1]]
}
}
}
}
Let's find all the paths leading to the sum:
var solutions = [[Int]]()
func getSubArraysWithTheSum(arr: [Int], row: Int, currentSum: Int, currentSolution: [Int]) {
//The following block will be executed when
//we reach the first cell in the first column
if row == 0,
currentSum == 0
{
solutions.append(currentSolution)
//notice the return to exit the scope
return
}
//The following block will be executed if
//the current cell is NOT used to reach the sum
if dynamicTable[row - 1][currentSum]
{
getSubArraysWithTheSum(arr: arr,
row: row - 1,
currentSum: currentSum,
currentSolution: currentSolution)
}
//The following block will be executed if
//the current cell IS used to reach the sum
if currentSum >= arr[row - 1],
dynamicTable[row - 1][currentSum - arr[row - 1]]
{
getSubArraysWithTheSum(arr: arr,
row: row - 1,
currentSum: currentSum - arr[row - 1],
currentSolution: currentSolution + [arr[row - 1]])
}
}
The whole function looks like this:
func getSubArrays(from array: [Int], withSum sum: Int) -> [[Int]] {
guard array.allSatisfy({ [=12=] > 0 }) else {
fatalError("All the elements of the array must be strictly positive")
}
guard array.count > 0, sum > 0 else {
return []
}
var solutions = [[Int]]()
var dynamicTable: [[Bool]] =
Array(repeating: Array(repeating: false, count: sum + 1),
count: array.count + 1)
//All of the elements of the first column are true
//since we can always make a zero sum out of not elements
for i in 0...array.count {
dynamicTable[i][0] = true
}
for row in 1...array.count {
for column in 1...sum {
if column < array[row - 1] {
dynamicTable[row][column] = dynamicTable[row - 1][column]
} else {
if dynamicTable[row - 1][column] {
dynamicTable[row][column] = true
} else {
dynamicTable[row][column] = dynamicTable[row - 1][column - array[row - 1]]
}
}
}
}
func getSubArraysWithTheSum(arr: [Int], row: Int, currentSum: Int, currentSolution: [Int]) {
//The following block will be executed when
//we reach the first cell in the first column
if row == 0,
currentSum == 0
{
solutions.append(currentSolution)
return
}
//The following block will be executed if
//the current cell is NOT used to reach the sum
if dynamicTable[row - 1][currentSum]
{
getSubArraysWithTheSum(arr: arr,
row: row - 1,
currentSum: currentSum,
currentSolution: currentSolution)
}
//The following block will be executed if
//the current cell IS used to reach the sum
if currentSum >= arr[row - 1],
dynamicTable[row - 1][currentSum - arr[row - 1]]
{
getSubArraysWithTheSum(arr: arr,
row: row - 1,
currentSum: currentSum - arr[row - 1],
currentSolution: currentSolution + [arr[row - 1]])
}
}
getSubArraysWithTheSum(arr: array, row: array.count , currentSum: sum, currentSolution: [])
return solutions
}
Here are some test cases:
getSubArrays(from: [3, 1, 4, 2], withSum: 5) //[[3, 2], [4, 1]]
getSubArrays(from: [1, 2, 2, 4], withSum: 3) //[[2, 1], [2, 1]]
getSubArrays(from: [7, 3, 4, 5, 6, 1], withSum: 9) //[[5, 3, 1], [5, 4], [6, 3]]
getSubArrays(from: [3], withSum: 3) //[[3]]
getSubArrays(from: [5], withSum: 10) //[]
getSubArrays(from: [1, 2], withSum: 0) //[]
getSubArrays(from: [], withSum: 4) //[]
This solution has been inspired by Sumit Ghosh's contribution here. A thorough explanation of how the dynamic table is constructed can be found in this video.