在计算大小为 K 的非连续子数组之和时查找数组值
Finding array values while calculating the sum of non-consecutive subarrays of size K
我试图找到长度至少为 k 的非连续子数组的最大总和。
例如,k = 2 的 [1, 2, 3, 1, 7, 9] 数组应该 return 21 具有子数组 [2,3] 和 [7,9],它们是2个最大子数组并且在数组内不连续(彼此分开)。
另一个例子是[1, 2, 3, 4] k = 3
returns: 9, [2, 3, 4]
我正在应用方法here which given an array of randomly sorted integers, calculates m number of subarrays of size k but does so by calculating a presum array making it difficult to identify the individual array values which make up the solution. As is done in this example。
是否可以更改此方法以显示构成总和的子数组?
下面是上述方法中描述的功能:
// reorganize array
public static int calcProfit(List<Integer> inputArray){
int lotCount = inputArray.get(0);
inputArray.remove(0);
int maxBusiness = inputArray.get(0);
inputArray.remove(0);
// convert arrayList to int array
int[] workingArray = new int[inputArray.size()];
for(int i = 0; i < inputArray.size(); i++) {
if (inputArray.get(i) != null) {
workingArray[i] = inputArray.get(i);
}
}
System.out.println(Arrays.toString(workingArray));
int prefixArray[] = new int[lotCount + 1 - maxBusiness];
int maxArrays = (int) Math.ceil(lotCount / maxBusiness);
arraySum(prefixArray, workingArray, lotCount, maxBusiness);
System.out.println("Prefix array is" + Arrays.toString(prefixArray));
int completeArray = maxSubarray(prefixArray, maxArrays, lotCount + 1 - maxBusiness, maxBusiness, 0);
return completeArray;
}
static void arraySum(int presum[], int arr[], int n, int k)
{
for (int i = 0; i < k; i++)
presum[0] += arr[i];
// store sum of array index i to i+k
// in presum array at index i of it.
for (int i = 1; i <= n - k; i++)
presum[i] += presum[i - 1] + arr[i + k - 1] -
arr[i - 1];
}
private static int maxSubarray(int preSum[], int m, int size, int k, int start) {
// stop if array length is 0
if (m == 0) {
return 0;
}
// stop if start greater than preSum
if (start > size - 1) {
return 0;
}
System.out.println("m is : " + m + " start is : " + start);
// if including subarray of size k
int includeMax = preSum[start] + maxSubarray(preSum,m - 1, size, k, start + k);
// search next possible subarray
int excludeMax = maxSubarray(preSum, m, size, k, start + 1);
System.out.println("exclude max is : " + excludeMax + " include max is " + includeMax);
// return max
return Math.max(includeMax, excludeMax);
}
您可以使用 dynamic programming
解决 O(n) 中的给定问题,方法是维护一个前缀和数组以快速计算大小为 k 的子数组的和维护一个跟踪数组,该数组记录在数组的每个步骤中采取的操作。这是相同的实现:https://ideone.com/VxKzUn
该方法背后的思想是,对于数组中的每个元素,我们都可以选择从该元素开始创建子数组,或者将其保留并移动到下一个元素,从而为我们提供最佳子数组-structure 其递归关系可以表示为:
f(n) = max{ sum(arr[n], .. , arr[n + k]) + f(n + k + 1), f(n + 1) }
from collections import defaultdict
dp = defaultdict(lambda: -1)
prefixsum = []
trace = []
def getSubArraySum(i, j):
if i == 0:
return prefixsum[j]
return (prefixsum[j] - prefixsum[i - 1])
def rec(cur, arr, k):
if cur >= len(arr):
return 0
if dp[cur] != -1:
return dp[cur]
# Assuming that all the elements in the array is positive,
# else set s1 and s2 to -Infinity
s1 = -1; s2 = -1
# If we choose the subarray starting at `cur`
if cur + k - 1 < len(arr):
s1 = getSubArraySum(cur, cur + k - 1) + rec(cur + k + 1, arr, k)
# If we ignore the subarray starting at `cur`
s2 = rec(cur + 1, arr, k)
dp[cur] = max(s1, s2)
if s1 >= s2:
trace[cur] = (True, cur + k + 1)
return s1
trace[cur] = (False, cur + 1)
return s2
def getTrace(arr, trace, k):
itr = 0
subArrays = []
while itr < len(trace):
if trace[itr][0]:
subArrays.append(arr[itr : itr + k])
itr = trace[itr][1]
return subArrays
def solve(arr, k):
global dp, trace, prefixsum
dp = defaultdict(lambda: -1)
trace = [(False, 0)] * len(arr)
prefixsum = [0] * len(arr)
prefixsum[0] = arr[0]
for i in range(1, len(arr)):
prefixsum[i] += prefixsum[i - 1] + arr[i]
print("Array :", arr)
print("Max sum: ", rec(0, arr, k))
print("Subarrays: ", getTrace(arr, trace, k))
print("-- * --")
solve([1, 2, 3, 4], 3)
solve([1, 2, 3, 1, 7, 9] , 2)
以上代码的输出是,
Array : [1, 2, 3, 4]
Max sum: 9
Subarrays: [[2, 3, 4]]
-- * --
Array : [1, 2, 3, 1, 7, 9]
Max sum: 21
Subarrays: [[2, 3], [7, 9]]
-- * --
我试图找到长度至少为 k 的非连续子数组的最大总和。
例如,k = 2 的 [1, 2, 3, 1, 7, 9] 数组应该 return 21 具有子数组 [2,3] 和 [7,9],它们是2个最大子数组并且在数组内不连续(彼此分开)。
另一个例子是[1, 2, 3, 4] k = 3 returns: 9, [2, 3, 4]
我正在应用方法here which given an array of randomly sorted integers, calculates m number of subarrays of size k but does so by calculating a presum array making it difficult to identify the individual array values which make up the solution. As is done in this example。
是否可以更改此方法以显示构成总和的子数组?
下面是上述方法中描述的功能:
// reorganize array
public static int calcProfit(List<Integer> inputArray){
int lotCount = inputArray.get(0);
inputArray.remove(0);
int maxBusiness = inputArray.get(0);
inputArray.remove(0);
// convert arrayList to int array
int[] workingArray = new int[inputArray.size()];
for(int i = 0; i < inputArray.size(); i++) {
if (inputArray.get(i) != null) {
workingArray[i] = inputArray.get(i);
}
}
System.out.println(Arrays.toString(workingArray));
int prefixArray[] = new int[lotCount + 1 - maxBusiness];
int maxArrays = (int) Math.ceil(lotCount / maxBusiness);
arraySum(prefixArray, workingArray, lotCount, maxBusiness);
System.out.println("Prefix array is" + Arrays.toString(prefixArray));
int completeArray = maxSubarray(prefixArray, maxArrays, lotCount + 1 - maxBusiness, maxBusiness, 0);
return completeArray;
}
static void arraySum(int presum[], int arr[], int n, int k)
{
for (int i = 0; i < k; i++)
presum[0] += arr[i];
// store sum of array index i to i+k
// in presum array at index i of it.
for (int i = 1; i <= n - k; i++)
presum[i] += presum[i - 1] + arr[i + k - 1] -
arr[i - 1];
}
private static int maxSubarray(int preSum[], int m, int size, int k, int start) {
// stop if array length is 0
if (m == 0) {
return 0;
}
// stop if start greater than preSum
if (start > size - 1) {
return 0;
}
System.out.println("m is : " + m + " start is : " + start);
// if including subarray of size k
int includeMax = preSum[start] + maxSubarray(preSum,m - 1, size, k, start + k);
// search next possible subarray
int excludeMax = maxSubarray(preSum, m, size, k, start + 1);
System.out.println("exclude max is : " + excludeMax + " include max is " + includeMax);
// return max
return Math.max(includeMax, excludeMax);
}
您可以使用 dynamic programming
解决 O(n) 中的给定问题,方法是维护一个前缀和数组以快速计算大小为 k 的子数组的和维护一个跟踪数组,该数组记录在数组的每个步骤中采取的操作。这是相同的实现:https://ideone.com/VxKzUn
该方法背后的思想是,对于数组中的每个元素,我们都可以选择从该元素开始创建子数组,或者将其保留并移动到下一个元素,从而为我们提供最佳子数组-structure 其递归关系可以表示为:
f(n) = max{ sum(arr[n], .. , arr[n + k]) + f(n + k + 1), f(n + 1) }
from collections import defaultdict
dp = defaultdict(lambda: -1)
prefixsum = []
trace = []
def getSubArraySum(i, j):
if i == 0:
return prefixsum[j]
return (prefixsum[j] - prefixsum[i - 1])
def rec(cur, arr, k):
if cur >= len(arr):
return 0
if dp[cur] != -1:
return dp[cur]
# Assuming that all the elements in the array is positive,
# else set s1 and s2 to -Infinity
s1 = -1; s2 = -1
# If we choose the subarray starting at `cur`
if cur + k - 1 < len(arr):
s1 = getSubArraySum(cur, cur + k - 1) + rec(cur + k + 1, arr, k)
# If we ignore the subarray starting at `cur`
s2 = rec(cur + 1, arr, k)
dp[cur] = max(s1, s2)
if s1 >= s2:
trace[cur] = (True, cur + k + 1)
return s1
trace[cur] = (False, cur + 1)
return s2
def getTrace(arr, trace, k):
itr = 0
subArrays = []
while itr < len(trace):
if trace[itr][0]:
subArrays.append(arr[itr : itr + k])
itr = trace[itr][1]
return subArrays
def solve(arr, k):
global dp, trace, prefixsum
dp = defaultdict(lambda: -1)
trace = [(False, 0)] * len(arr)
prefixsum = [0] * len(arr)
prefixsum[0] = arr[0]
for i in range(1, len(arr)):
prefixsum[i] += prefixsum[i - 1] + arr[i]
print("Array :", arr)
print("Max sum: ", rec(0, arr, k))
print("Subarrays: ", getTrace(arr, trace, k))
print("-- * --")
solve([1, 2, 3, 4], 3)
solve([1, 2, 3, 1, 7, 9] , 2)
以上代码的输出是,
Array : [1, 2, 3, 4]
Max sum: 9
Subarrays: [[2, 3, 4]]
-- * --
Array : [1, 2, 3, 1, 7, 9]
Max sum: 21
Subarrays: [[2, 3], [7, 9]]
-- * --