如何使用 asyncio 和 concurrent.futures.ProcessPoolExecutor 在 Python 中终止 long-运行 计算(CPU 绑定任务)?

How to terminate long-running computation (CPU bound task) in Python using asyncio and concurrent.futures.ProcessPoolExecutor?

Similar Question (but answer does not work for me):

与上面链接的问题和提供的解决方案不同,在我的例子中,计算本身相当长(CPU 绑定)并且不能 运行 在循环中检查是否发生了某些事件.

以下代码的简化版本:

import asyncio
import concurrent.futures as futures
import time

class Simulator:
    def __init__(self):
        self._loop = None
        self._lmz_executor = None
        self._tasks = []
        self._max_execution_time = time.monotonic() + 60
        self._long_running_tasks = []

    def initialise(self):
        # Initialise the main asyncio loop
        self._loop = asyncio.get_event_loop()
        self._loop.set_default_executor(
            futures.ThreadPoolExecutor(max_workers=3))

        # Run separate processes of long computation task
        self._lmz_executor = futures.ProcessPoolExecutor(max_workers=3)

    def run(self):
        self._tasks.extend(
            [self.bot_reasoning_loop(bot_id) for bot_id in [1, 2, 3]]
        )

        try:
            # Gather bot reasoner tasks
            _reasoner_tasks = asyncio.gather(*self._tasks)
            # Send the reasoner tasks to main monitor task
            asyncio.gather(self.sample_main_loop(_reasoner_tasks))
            self._loop.run_forever()
        except KeyboardInterrupt:
            pass
        finally:
            self._loop.close()

    async def sample_main_loop(self, reasoner_tasks):
        """This is the main monitor task"""
        await asyncio.wait_for(reasoner_tasks, None)
        for task in self._long_running_tasks:
            try:
                await asyncio.wait_for(task, 10)
            except asyncio.TimeoutError:
                print("Oops. Some long operation timed out.")
                task.cancel()  # Doesn't cancel and has no effect
                task.set_result(None)  # Doesn't seem to have an effect

        self._lmz_executor.shutdown()
        self._loop.stop()
        print('And now I am done. Yay!')

    async def bot_reasoning_loop(self, bot):
        import math

        _exec_count = 0
        _sleepy_time = 15
        _max_runs = math.floor(self._max_execution_time / _sleepy_time)

        self._long_running_tasks.append(
            self._loop.run_in_executor(
                    self._lmz_executor, really_long_process, _sleepy_time))

        while time.monotonic() < self._max_execution_time:
            print("Bot#{}: thinking for {}s. Run {}/{}".format(
                    bot, _sleepy_time, _exec_count, _max_runs))
            await asyncio.sleep(_sleepy_time)
            _exec_count += 1

        print("Bot#{} Finished Thinking".format(bot))

def really_long_process(sleepy_time):
    print("I am a really long computation.....")
    _large_val = 9729379273492397293479237492734 ** 344323
    print("I finally computed this large value: {}".format(_large_val))

if __name__ == "__main__":
    sim = Simulator()
    sim.initialise()
    sim.run()

这个想法是有一个主模拟循环 运行 并监控三个机器人线程。然后,这些机器人线程中的每一个都会执行一些推理,但也会使用 ProcessPoolExecutor 启动一个非常长的后台进程,这可能最终会 运行 延长它们自己的 threshold/max 推理执行时间。

正如您在上面的代码中所看到的,我试图在发生超时时 .cancel() 这些任务。虽然这并没有真正取消实际计算,但它一直在后台发生,并且 asyncio 循环直到所有长 运行ning 计算完成后才终止。

如何在方法中终止如此长的 运行ning CPU 绑定计算?

Other similar SO questions, but not necessarily related or helpful:

  1. asyncio: Is it possible to cancel a future been run by an Executor?
  2. How to terminate a single async task in multiprocessing if that single async task exceeds a threshold time in Python
  3. Asynchronous multiprocessing with a worker pool in Python: how to keep going after timeout?

How do I terminate such long running CPU-bound computations within a method?

您尝试的方法无效,因为任务开始执行后 return 由 ProcessPoolExecutor are not cancellable. Although asyncio's run_in_executor tries to propagate the cancellation, it is simply ignoredFuture.cancel 编辑。

这没有根本原因。与线程不同,进程可以安全终止,因此 ProcessPoolExecutor.submit 到 return 一个 cancel 终止相应进程的未来是完全可能的。 Asyncio 协程具有明确定义的取消语义,可以自动使用它。不幸的是,ProcessPoolExecutor.submit return 是一个常规的 concurrent.futures.Future,它假定底层执行者的最小公分母,并将 运行 未来视为不可触及的。

因此,要取消在子进程中执行的任务,必须完全绕过 ProcessPoolExecutor 并管理自己的进程。挑战在于如何在不重新实现 multiprocessing 的一半的情况下做到这一点。标准库提供的一个选项是(ab)使用 multiprocessing.Pool 用于此目的,因为它支持工作进程的可靠关闭。 CancellablePool 可以按如下方式工作:

  • 不是生成固定数量的进程,而是生成固定数量的 1-worker 池。
  • 从 asyncio 协程中将任务分配给池。如果协程在等待另一个进程中的任务完成时被取消,terminate 单进程池并创建一个新的。
  • 因为一切都是从单个异步线程协调的,所以不必担心竞争条件,例如意外终止已经开始执行另一个任务的进程。 (如果要在 ProcessPoolExecutor 中支持取消,则需要避免这种情况。)

这是该想法的示例实现:

import asyncio
import multiprocessing

class CancellablePool:
    def __init__(self, max_workers=3):
        self._free = {self._new_pool() for _ in range(max_workers)}
        self._working = set()
        self._change = asyncio.Event()

    def _new_pool(self):
        return multiprocessing.Pool(1)

    async def apply(self, fn, *args):
        """
        Like multiprocessing.Pool.apply_async, but:
         * is an asyncio coroutine
         * terminates the process if cancelled
        """
        while not self._free:
            await self._change.wait()
            self._change.clear()
        pool = usable_pool = self._free.pop()
        self._working.add(pool)

        loop = asyncio.get_event_loop()
        fut = loop.create_future()
        def _on_done(obj):
            loop.call_soon_threadsafe(fut.set_result, obj)
        def _on_err(err):
            loop.call_soon_threadsafe(fut.set_exception, err)
        pool.apply_async(fn, args, callback=_on_done, error_callback=_on_err)

        try:
            return await fut
        except asyncio.CancelledError:
            pool.terminate()
            usable_pool = self._new_pool()
        finally:
            self._working.remove(pool)
            self._free.add(usable_pool)
            self._change.set()

    def shutdown(self):
        for p in self._working | self._free:
            p.terminate()
        self._free.clear()

显示取消的简约测试用例:

def really_long_process():
    print("I am a really long computation.....")
    large_val = 9729379273492397293479237492734 ** 344323
    print("I finally computed this large value: {}".format(large_val))

async def main():
    loop = asyncio.get_event_loop()
    pool = CancellablePool()

    tasks = [loop.create_task(pool.apply(really_long_process))
             for _ in range(5)]
    for t in tasks:
        try:
            await asyncio.wait_for(t, 1)
        except asyncio.TimeoutError:
            print('task timed out and cancelled')
    pool.shutdown()

asyncio.get_event_loop().run_until_complete(main())

请注意 CPU 使用率如何从未超过 3 个核心,以及它如何在接近测试结束时开始下降,表明进程正在按预期终止。

要将其应用于问题中的代码,请将 self._lmz_executor 设为 CancellablePool 的实例并将 self._loop.run_in_executor(...) 更改为 self._loop.create_task(self._lmz_executor.apply(...))