instantiateResampleInstance.CVDesc:尺寸折叠太多

instantiateResampleInstance.CVDesc: too many folds for size

正在对 xgboost 模型进行参数调整,运行 在我的 mlr 实现中出现了一个有趣的错误,我认为这是由我的重采样实例引起的 due to the documentation here。问题是我不太清楚如何修复它。我试过手动设置函数的大小参数,但也被拒绝了。

基本代码:

samplecount = sample.split(test_train,SplitRatio = 0.8)

stest <- subset(test_train,samplecount ==TRUE)



strain <- subset(test_train,samplecount ==FALSE)

new_tr <- model.matrix(~.+0,data = subset(strain,select=-c(Value))) 

new_ts <-  model.matrix(~.+0,data = subset(stest,select=-c(Value))) 

labels <- strain$Value
labels <- as.numeric(labels)-1

ts_label <- stest$Value
ts_label <- as.numeric(ts_label)-1

dtrain <- xgb.DMatrix(data = new_tr,label = labels)


dtest <- xgb.DMatrix(data = new_ts,label=ts_label)

params <- list(booster = "gbtree", objective = "reg:linear", 
               eta=0.3, gamma=0, max_depth=6, min_child_weight=1, subsample=1, colsample_bytree=1)

xgbcv <- xgb.cv( params = params, data = dtrain, 
                 nrounds = 100,  showsd = T,nfold=5,
                 stratified = T, print.every.n = 1, early.stop.round = 20, maximize = F)


xgb1 <- xgb.train (params = params, data = dtrain, nrounds = 79, watchlist = list(val=dtest,train=dtrain), print.every.n = 10, early.stop.round = 10, maximize = F , eval_metric = "error")

xgbpred <- predict (xgb1,dtest)



mat <- xgb.importance (feature_names = colnames(new_tr),model = xgb1)
 xgb.plot.importance (importance_matrix = mat[1:20]) 

 #convert characters to factors
  fact_col <- colnames(strain)[sapply(strain,is.character)]

  for(i in fact_col) set(strain,j=i,value = factor(strain[[i]]))
  for (i in fact_col) set(stest,j=i,value = factor(stest[[i]]))

  ## this seems like an odd add, but for the steps

  strain$Value <- as.factor(strain$Value)

  stest$Value <- as.factor(stest$Value)

 #create tasks
  traintask <- makeClassifTask (data = strain,target = "Value",fixup.data = "no")
  testtask <- makeClassifTask (data = stest,target = "Value",fixup.data = "no")

 #do one hot encoding`<br/> 
  traintask <- createDummyFeatures (obj = traintask) 
  testtask <- createDummyFeatures (obj = testtask)



 lrn <- makeLearner("regr.xgboost",predict.type = "response")
  lrn$par.vals <- list( objective="reg:linear", eval_metric="error", nrounds=100L, eta=0.1)

 #set parameter space
  params <- makeParamSet( makeDiscreteParam("booster",values = c("gbtree","gblinear")),
                          makeIntegerParam("max_depth",lower = 3L,upper = 10L),
                          makeNumericParam("min_child_weight",lower = 1L,upper = 10L), 
                          makeNumericParam("subsample",lower = 0.5,upper = 1), 
                          makeNumericParam("colsample_bytree",lower = 0.5,upper = 1))

 #set resampling strategy
  rdesc <- makeResampleDesc("CV",stratify = T,iters=5L)


  ctrl <- makeTuneControlRandom(maxit = 10L)  


  library(parallel)
   library(parallelMap) 
   parallelStartSocket(cpus = detectCores())


  #parameter tuning
  mytune <- tuneParams(learner = lrn, task = traintask, resampling = rdesc, , measures = acc, par.set = params, control = ctrl, show.info = T)

Error in instantiateResampleInstance.CVDesc(desc, length(ci), task) : 
  Cannot use more folds (5) than size (1)!

从那里我试过了:

rdesc <- makeResampleDesc("CV",stratify = T,size=5)
Error in makeResampleDescCV(size = 5) : unused argument (size = 5)

我在这里有点不知所措,有什么想法吗?

大小不是 makeResampleDesc 中的参数。我认为(不完全确定),你的问题是,你对某些 类 没有足够的观察,然后你无法进行分层。

尝试使用:rdesc <- makeResampleDesc("CV",stratify = F,iters=5)

问题来自 makeResampleDesc 函数中的 stratify 项。我们通常使用分层方法作为一种统计方法来掌握混杂,即使用模型 class化中的混淆。

您可以阅读理论和推理(在 Python 中实现)here

在您的数据集中,如果 target 变量的 class 条目很少(少于 5 个),则 makeResampleDesc 函数无法执行该特定 class.

的重采样实例

如上所述,设置 stratify = F 将解决此处的问题,但我会对此进行调查,并会 oversample 任何 class 进行少量观察,或者, holdout (read here) 从最初的训练到了解如何对 class 的其余部分进行分类,然后再简单地忽略 stratify 方法。

要了解哪些 classes 几乎没有观察,您可以做的是查看频率并使用以下行从那里做出决定:

library("data.table")

table(daraframe$target)

在我的例子中,我几乎没有 class GG3 的实例,所以我无法 stratify 数据,见下文: