尝试 运行 nvidia 在 Jetson TX2 上的教程代码时,为什么层权重为空且 TRT 未找到缓存?
Why are the layer weights null and TRT not finding cache when trying to run nvidia's tutorial code on Jetson TX2?
我正在尝试 运行 来自 nvidia 的 repo here. 的教程代码
这是我的 Jetson TX2 上的控制台 imagenet 程序发生的情况:
nvidia@tegra-ubuntu:~/jetson-inference/build/aarch64/bin$ ./imagenet-console orange_0.pjg output_0.jpg
imagenet-console
args (3): 0 [./imagenet-console] 1 [orange_0.pjg] 2 [output_0.jpg]
imageNet -- loading classification network model from:
-- prototxt networks/googlenet.prototxt
-- model networks/bvlc_googlenet.caffemodel
-- class_labels networks/ilsvrc12_synset_words.txt
-- input_blob 'data'
-- output_blob 'prob'
-- batch_size 2
[TRT] TensorRT version 4.0.2
[TRT] attempting to open cache file networks/bvlc_googlenet.caffemodel.2.tensorcache
[TRT] cache file not found, profiling network model
[TRT] platform has FP16 support.
[TRT] loading networks/googlenet.prototxt networks/bvlc_googlenet.caffemodel
Weights for layer conv1/7x7_s2 doesn't exist
[TRT] CaffeParser: ERROR: Attempting to access NULL weights
Weights for layer conv1/7x7_s2 doesn't exist
[TRT] CaffeParser: ERROR: Attempting to access NULL weights
[TRT] Parameter check failed at: ../builder/Network.cpp::addConvolution::40, condition: kernelWeights.values != NULL
error parsing layer type Convolution index 1
[TRT] failed to parse caffe network
failed to load networks/bvlc_googlenet.caffemodel
failed to load networks/bvlc_googlenet.caffemodel
imageNet -- failed to initialize.
imagenet-console: failed to initialize imageNet
我的Jetson板子上没有安装Caffe,因为教程中明确说明不需要。我不确定如果 TRT 能够正确缓存,空权重错误是否会得到修复。有什么想法吗?
- Python 2.7
- Cuda 9.0
- TensorRT 4.0
公司防火墙阻止正确下载模型。手动下载模型并将它们放入网络文件夹解决了问题。
我正在尝试 运行 来自 nvidia 的 repo here. 的教程代码 这是我的 Jetson TX2 上的控制台 imagenet 程序发生的情况:
nvidia@tegra-ubuntu:~/jetson-inference/build/aarch64/bin$ ./imagenet-console orange_0.pjg output_0.jpg
imagenet-console
args (3): 0 [./imagenet-console] 1 [orange_0.pjg] 2 [output_0.jpg]
imageNet -- loading classification network model from:
-- prototxt networks/googlenet.prototxt
-- model networks/bvlc_googlenet.caffemodel
-- class_labels networks/ilsvrc12_synset_words.txt
-- input_blob 'data'
-- output_blob 'prob'
-- batch_size 2
[TRT] TensorRT version 4.0.2
[TRT] attempting to open cache file networks/bvlc_googlenet.caffemodel.2.tensorcache
[TRT] cache file not found, profiling network model
[TRT] platform has FP16 support.
[TRT] loading networks/googlenet.prototxt networks/bvlc_googlenet.caffemodel
Weights for layer conv1/7x7_s2 doesn't exist
[TRT] CaffeParser: ERROR: Attempting to access NULL weights
Weights for layer conv1/7x7_s2 doesn't exist
[TRT] CaffeParser: ERROR: Attempting to access NULL weights
[TRT] Parameter check failed at: ../builder/Network.cpp::addConvolution::40, condition: kernelWeights.values != NULL
error parsing layer type Convolution index 1
[TRT] failed to parse caffe network
failed to load networks/bvlc_googlenet.caffemodel
failed to load networks/bvlc_googlenet.caffemodel
imageNet -- failed to initialize.
imagenet-console: failed to initialize imageNet
我的Jetson板子上没有安装Caffe,因为教程中明确说明不需要。我不确定如果 TRT 能够正确缓存,空权重错误是否会得到修复。有什么想法吗?
- Python 2.7
- Cuda 9.0
- TensorRT 4.0
公司防火墙阻止正确下载模型。手动下载模型并将它们放入网络文件夹解决了问题。