用过滤器按组替换 NA 值的平均值

Replace NA values with average by group with filter

我有以下数据集:

head(weather_data)

  dmanum DATE       Avg_precipitation Avg_TAVG 
  <chr>  <date>                 <dbl>    <dbl>               
1 501    2017-01-01          0.000976     45.3               
2 501    2017-01-02                NA     39.3                
3 501    2017-01-03             0.366       42                
4 502    2017-01-01                NA       46                
5 502    2017-01-02                NA     33.3                
6 502    2017-01-03                NA     31.3                
7 503    2017-01-01                 5       46                
8 503    2017-01-02                10     33.3                
9 503    2017-01-03                15     31.3                

具有相同日期的 dmanum 有多个值。根据我对 dmanum 的选择,我想按周取平均值 Avg_precipitation 并替换该特定 DMA 的 NA。

例如,如果我要使用此数据集,我会尝试这样的操作,但出现错误:

weather_data1<- weather_data %>%
  group_by(DATE) %>% 
  filter(., dmanum==502) %>%
  mutate_at(Avg_precipitation = na.fill(mean(Avg_precipitatation))

预期的输出是这样的:

  dmanum DATE       Avg_precipitation Avg_TAVG 
  <chr>  <date>                 <dbl>    <dbl>               
1 501    2017-01-01          0.000976     45.3                
2 501    2017-01-02                NA     39.3                
3 501    2017-01-03             0.366       42                
4 502    2017-01-01            2.5004       46                
5 502    2017-01-02                10     33.3                
6 502    2017-01-03             7.683     31.3                
7 503    2017-01-01                 5       46                
8 503    2017-01-02                10     33.3                
9 503    2017-01-03                15     31.3                

我们可以在group_by之后使用replace。而不是 filtering 行,在 replacelist 参数中指定逻辑以仅替换那些 NAs 其中 'dmanum' 是 502

library(tidyverse)
weather_data %>%
       group_by(DATE) %>%
       mutate(Avg_precipitation = replace(Avg_precipitation,  
           is.na(Avg_precipitation) & dmanum == 502, 
          mean(Avg_precipitation, na.rm = TRUE)))
# A tibble: 9 x 4
# Groups:   DATE [3]
#  dmanum DATE       Avg_precipitation Avg_TAVG
#   <int> <date>                 <dbl>    <dbl>
#1    501 2017-01-01          0.000976     45.3
#2    501 2017-01-02         NA            39.3
#3    501 2017-01-03          0.366        42  
#4    502 2017-01-01          2.50         46  
#5    502 2017-01-02         10            33.3
#6    502 2017-01-03          7.68         31.3
#7    503 2017-01-01          5            46  
#8    503 2017-01-02         10            33.3
#9    503 2017-01-03         15            31.3