如何尽可能准确地绘制蝴蝶曲线?

How to draw a butterfly curve as accurate as possible?

我正在尝试使用 Java 绘制 butterfly curve

这是上述曲线的参数方程:

我记得大学时,用Java画参数方程的方法是下一个:

public void paintComponent(Graphics g) {
    super.paintComponent(g);
    Graphics2D g2 = (Graphics2D)g;
    g2.translate(300,300);
    int x1,y1;
    int x0 = 0;
    int y0 = (int)(Math.E-2); //for x = 0, we get y = Math.E - 2
    int nPoints = 1000;
    g2.scale(30,-30);
    for(int i=0;i<nPoints;i++) {
        double t= 12*i*Math.PI/nPoints; //to make it between 0 and 12*PI.
        x1=(int)(Math.sin(t)*(Math.pow(Math.E,Math.cos(t))-2*Math.cos(4*t)-Math.pow(Math.sin(t/12),5)));
        y1 = (int)(Math.cos(t)*(Math.pow(Math.E,Math.cos(t))-2*Math.cos(4*t)-Math.pow(Math.sin(t/12),5)));
        g2.drawLine(x0,y0,x1,y1);
        x0=x1;
        y0=y1;
    }
}

现在,这给了我下一个结果:

好吧,这和预期的结果相差太远了。

然后我决定使用 Line2D.Double 进行尝试,认为这样可以提供更准确的绘图。

public void paintComponent(Graphics g) {
    super.paintComponent(g);
    Graphics2D g2 = (Graphics2D)g;
    g2.translate(300,300);
    double x1,y1;
    double x0 = 0;
    int nPoints = 500;
    g2.scale(30,-30);
    double y0 = Math.E-2;
    for(int i=0;i<nPoints;i++) {
        double t= 12*i*Math.PI/nPoints;
        x1=(Math.sin(t)*(Math.pow(Math.E,Math.cos(t))-2*Math.cos(4*t)-Math.pow(Math.sin(t/12),5)));
        y1 = (Math.cos(t)*(Math.pow(Math.E,Math.cos(t))-2*Math.cos(4*t)-Math.pow(Math.sin(t/12),5)));
        g2.draw(new Line2D.Double(x0,y0,x1,y1));
        x0=x1;
        y0=y1;
    }
}

产生下一个结果:

好的,这确实看起来更好,但肯定不是预期的结果。

所以我想问一下,有没有办法用Java这个参数方程画出最准确的曲线?

不一定要 100% 像上图,但最接近。

你的缩放语句也会缩放你的线的宽度,导致你的曲线形状奇怪。有两种简单的方法可以解决这个问题:

  1. 减小线条的宽度,例如到 0.01f:

    Graphics2D g2 = (Graphics2D)g;
    g2.translate(300,300);
    double x1,y1;
    double x0 = 0;
    int nPoints = 500;
    // Alternative 1 ---------------------
    g2.scale(30,-30);
    g2.setStroke(new BasicStroke(0.01f ));
    // -----------------------------------
    double y0 = Math.E-2;
    for(int i=0;i<nPoints;i++) {
        double t= 12*i*Math.PI/nPoints;
        x1= (Math.sin(t)*(Math.pow(Math.E,Math.cos(t))-2*Math.cos(4*t)-Math.pow(Math.sin(t/12),5)));
        y1 = (Math.cos(t)*(Math.pow(Math.E,Math.cos(t))-2*Math.cos(4*t)-Math.pow(Math.sin(t/12),5)));
        g2.draw(new Line2D.Double(x0,y0,x1,y1));
        x0=x1;
        y0=y1;
    }  
    

这导致:

  1. 删除比例语句并使用其幅度缩放曲线,即使用关于 x 和 y 值的常数预因子,例如-30:

    Graphics2D g2 = (Graphics2D)g;
    g2.translate(300,300);
    double x1,y1;
    double x0 = 0;
    int nPoints = 500;
    // Alternative 2 ---------------------
    double amp = -30.0;
    // -----------------------------------
    double y0 = Math.E-2;
    for(int i=0;i<nPoints;i++) {
        double t= 12*i*Math.PI/nPoints;
        // Alternative 2 ----------------------------------------------------------------------------------
        x1=amp*(Math.sin(t)*(Math.pow(Math.E,Math.cos(t))-2*Math.cos(4*t)-Math.pow(Math.sin(t/12),5)));
        y1=amp*(Math.cos(t)*(Math.pow(Math.E,Math.cos(t))-2*Math.cos(4*t)-Math.pow(Math.sin(t/12),5)));
        // ------------------------------------------------------------------------------------------------
        g2.draw(new Line2D.Double(x0,y0,x1,y1));
        x0=x1;
        y0=y1;
    }  
    

这导致(或多或少相同):

此外,您可以通过使用抗锯齿和增加 nPoints 来提高绘图质量:

    Graphics2D g2 = (Graphics2D)g;
    // Optimization ------------------------------------
    g2.setRenderingHint(RenderingHints.KEY_ANTIALIASING,
            RenderingHints.VALUE_ANTIALIAS_ON);
    int nPoints = 1500;
    // -------------------------------------------------
    g2.translate(300,300);
    double x1,y1;
    double x0 = 0;
    // Alternative 1 ---------------------
    g2.scale(50,-50);
    g2.setStroke(new BasicStroke(0.01f ));
    // -----------------------------------
    double y0 = Math.E-2;
    for(int i=0;i<nPoints;i++) {
        double t= 12*i*Math.PI/nPoints;
        x1= (Math.sin(t)*(Math.pow(Math.E,Math.cos(t))-2*Math.cos(4*t)-Math.pow(Math.sin(t/12),5)));
        y1 = (Math.cos(t)*(Math.pow(Math.E,Math.cos(t))-2*Math.cos(4*t)-Math.pow(Math.sin(t/12),5)));
        g2.draw(new Line2D.Double(x0,y0,x1,y1));
        x0=x1;
        y0=y1;
    }  

结果(看起来好多了):

至此,两点之间的连接是一条直线。当然,您可以使用样条曲线(贝塞尔曲线等)进行进一步优化,但这可能并不简单。