从 Sparklyr 中提取和可视化模型树
Extract and Visualize Model Trees from Sparklyr
对于如何将树信息从 sparklyr 的 ml_decision_tree_classifier、ml_gbt_classifier 或 ml_random_forest_classifier 模型转换为 a.) 其他人可以理解的格式,有没有人有任何建议? R 树相关库和(最终)b.) 非技术消费树的可视化?这将包括从矢量汇编程序期间生成的替换字符串索引值转换回实际特征名称的能力。
为了提供示例,以下代码从 a sparklyr blog post 中大量复制:
library(sparklyr)
library(dplyr)
# If needed, install Spark locally via `spark_install()`
sc <- spark_connect(master = "local")
iris_tbl <- copy_to(sc, iris)
# split the data into train and validation sets
iris_data <- iris_tbl %>%
sdf_partition(train = 2/3, validation = 1/3, seed = 123)
iris_pipeline <- ml_pipeline(sc) %>%
ft_dplyr_transformer(
iris_data$train %>%
mutate(Sepal_Length = log(Sepal_Length),
Sepal_Width = Sepal_Width ^ 2)
) %>%
ft_string_indexer("Species", "label")
iris_pipeline_model <- iris_pipeline %>%
ml_fit(iris_data$train)
iris_vector_assembler <- ft_vector_assembler(
sc,
input_cols = setdiff(colnames(iris_data$train), "Species"),
output_col = "features"
)
random_forest <- ml_random_forest_classifier(sc,features_col = "features")
# obtain the labels from the fitted StringIndexerModel
iris_labels <- iris_pipeline_model %>%
ml_stage("string_indexer") %>%
ml_labels()
# IndexToString will convert the predicted numeric values back to class labels
iris_index_to_string <- ft_index_to_string(sc, "prediction", "predicted_label",
labels = iris_labels)
# construct a pipeline with these stages
iris_prediction_pipeline <- ml_pipeline(
iris_pipeline, # pipeline from previous section
iris_vector_assembler,
random_forest,
iris_index_to_string
)
# fit to data and make some predictions
iris_prediction_model <- iris_prediction_pipeline %>%
ml_fit(iris_data$train)
iris_predictions <- iris_prediction_model %>%
ml_transform(iris_data$validation)
iris_predictions %>%
select(Species, label:predicted_label) %>%
glimpse()
根据 here 的建议反复试验后,我能够以 "if/else" 格式转换为字符串打印出基础决策树的公式:
model_stage <- iris_prediction_model$stages[[3]]
spark_jobj(model_stage) %>% invoke(., "toDebugString") %>% cat()
##print out below##
RandomForestClassificationModel (uid=random_forest_classifier_5c6a1934c8e) with 20 trees
Tree 0 (weight 1.0):
If (feature 2 <= 2.5)
Predict: 1.0
Else (feature 2 > 2.5)
If (feature 2 <= 4.95)
If (feature 3 <= 1.65)
Predict: 0.0
Else (feature 3 > 1.65)
If (feature 0 <= 1.7833559100698644)
Predict: 0.0
Else (feature 0 > 1.7833559100698644)
Predict: 2.0
Else (feature 2 > 4.95)
If (feature 2 <= 5.05)
If (feature 1 <= 6.505000000000001)
Predict: 2.0
Else (feature 1 > 6.505000000000001)
Predict: 0.0
Else (feature 2 > 5.05)
Predict: 2.0
Tree 1 (weight 1.0):
If (feature 3 <= 0.8)
Predict: 1.0
Else (feature 3 > 0.8)
If (feature 3 <= 1.75)
If (feature 1 <= 5.0649999999999995)
If (feature 3 <= 1.05)
Predict: 0.0
Else (feature 3 > 1.05)
If (feature 0 <= 1.8000241202036602)
Predict: 2.0
Else (feature 0 > 1.8000241202036602)
Predict: 0.0
Else (feature 1 > 5.0649999999999995)
If (feature 0 <= 1.8000241202036602)
Predict: 0.0
Else (feature 0 > 1.8000241202036602)
If (feature 2 <= 5.05)
Predict: 0.0
Else (feature 2 > 5.05)
Predict: 2.0
Else (feature 3 > 1.75)
Predict: 2.0
Tree 2 (weight 1.0):
If (feature 3 <= 0.8)
Predict: 1.0
Else (feature 3 > 0.8)
If (feature 0 <= 1.7664051342320237)
Predict: 0.0
Else (feature 0 > 1.7664051342320237)
If (feature 3 <= 1.45)
If (feature 2 <= 4.85)
Predict: 0.0
Else (feature 2 > 4.85)
Predict: 2.0
Else (feature 3 > 1.45)
If (feature 3 <= 1.65)
If (feature 1 <= 8.125)
Predict: 2.0
Else (feature 1 > 8.125)
Predict: 0.0
Else (feature 3 > 1.65)
Predict: 2.0
Tree 3 (weight 1.0):
If (feature 0 <= 1.6675287895788053)
If (feature 2 <= 2.5)
Predict: 1.0
Else (feature 2 > 2.5)
Predict: 0.0
Else (feature 0 > 1.6675287895788053)
If (feature 3 <= 1.75)
If (feature 3 <= 1.55)
If (feature 1 <= 7.025)
If (feature 2 <= 4.55)
Predict: 0.0
Else (feature 2 > 4.55)
Predict: 2.0
Else (feature 1 > 7.025)
Predict: 0.0
Else (feature 3 > 1.55)
If (feature 2 <= 5.05)
Predict: 0.0
Else (feature 2 > 5.05)
Predict: 2.0
Else (feature 3 > 1.75)
Predict: 2.0
Tree 4 (weight 1.0):
If (feature 2 <= 4.85)
If (feature 2 <= 2.5)
Predict: 1.0
Else (feature 2 > 2.5)
Predict: 0.0
Else (feature 2 > 4.85)
If (feature 2 <= 5.05)
If (feature 0 <= 1.8484238118815566)
Predict: 2.0
Else (feature 0 > 1.8484238118815566)
Predict: 0.0
Else (feature 2 > 5.05)
Predict: 2.0
Tree 5 (weight 1.0):
If (feature 2 <= 1.65)
Predict: 1.0
Else (feature 2 > 1.65)
If (feature 3 <= 1.65)
If (feature 0 <= 1.8325494627242664)
Predict: 0.0
Else (feature 0 > 1.8325494627242664)
If (feature 2 <= 4.95)
Predict: 0.0
Else (feature 2 > 4.95)
Predict: 2.0
Else (feature 3 > 1.65)
Predict: 2.0
Tree 6 (weight 1.0):
If (feature 2 <= 2.5)
Predict: 1.0
Else (feature 2 > 2.5)
If (feature 2 <= 5.05)
If (feature 3 <= 1.75)
Predict: 0.0
Else (feature 3 > 1.75)
Predict: 2.0
Else (feature 2 > 5.05)
Predict: 2.0
Tree 7 (weight 1.0):
If (feature 3 <= 0.55)
Predict: 1.0
Else (feature 3 > 0.55)
If (feature 3 <= 1.65)
If (feature 2 <= 4.75)
Predict: 0.0
Else (feature 2 > 4.75)
Predict: 2.0
Else (feature 3 > 1.65)
If (feature 2 <= 4.85)
If (feature 0 <= 1.7833559100698644)
Predict: 0.0
Else (feature 0 > 1.7833559100698644)
Predict: 2.0
Else (feature 2 > 4.85)
Predict: 2.0
Tree 8 (weight 1.0):
If (feature 3 <= 0.8)
Predict: 1.0
Else (feature 3 > 0.8)
If (feature 3 <= 1.85)
If (feature 2 <= 4.85)
Predict: 0.0
Else (feature 2 > 4.85)
If (feature 0 <= 1.8794359129669855)
Predict: 2.0
Else (feature 0 > 1.8794359129669855)
If (feature 3 <= 1.55)
Predict: 0.0
Else (feature 3 > 1.55)
Predict: 0.0
Else (feature 3 > 1.85)
Predict: 2.0
Tree 9 (weight 1.0):
If (feature 2 <= 2.5)
Predict: 1.0
Else (feature 2 > 2.5)
If (feature 2 <= 4.95)
Predict: 0.0
Else (feature 2 > 4.95)
Predict: 2.0
Tree 10 (weight 1.0):
If (feature 3 <= 0.8)
Predict: 1.0
Else (feature 3 > 0.8)
If (feature 2 <= 4.95)
Predict: 0.0
Else (feature 2 > 4.95)
If (feature 2 <= 5.05)
If (feature 3 <= 1.55)
Predict: 2.0
Else (feature 3 > 1.55)
If (feature 3 <= 1.75)
Predict: 0.0
Else (feature 3 > 1.75)
Predict: 2.0
Else (feature 2 > 5.05)
Predict: 2.0
Tree 11 (weight 1.0):
If (feature 3 <= 0.8)
Predict: 1.0
Else (feature 3 > 0.8)
If (feature 2 <= 5.05)
If (feature 2 <= 4.75)
Predict: 0.0
Else (feature 2 > 4.75)
If (feature 3 <= 1.75)
Predict: 0.0
Else (feature 3 > 1.75)
Predict: 2.0
Else (feature 2 > 5.05)
Predict: 2.0
Tree 12 (weight 1.0):
If (feature 3 <= 0.8)
Predict: 1.0
Else (feature 3 > 0.8)
If (feature 3 <= 1.75)
If (feature 3 <= 1.35)
Predict: 0.0
Else (feature 3 > 1.35)
If (feature 0 <= 1.695573522904327)
Predict: 0.0
Else (feature 0 > 1.695573522904327)
If (feature 1 <= 8.125)
Predict: 2.0
Else (feature 1 > 8.125)
Predict: 0.0
Else (feature 3 > 1.75)
If (feature 0 <= 1.7833559100698644)
Predict: 0.0
Else (feature 0 > 1.7833559100698644)
Predict: 2.0
Tree 13 (weight 1.0):
If (feature 3 <= 0.55)
Predict: 1.0
Else (feature 3 > 0.55)
If (feature 2 <= 4.95)
If (feature 2 <= 4.75)
Predict: 0.0
Else (feature 2 > 4.75)
If (feature 0 <= 1.8000241202036602)
If (feature 1 <= 9.305)
Predict: 2.0
Else (feature 1 > 9.305)
Predict: 0.0
Else (feature 0 > 1.8000241202036602)
Predict: 0.0
Else (feature 2 > 4.95)
Predict: 2.0
Tree 14 (weight 1.0):
If (feature 2 <= 2.5)
Predict: 1.0
Else (feature 2 > 2.5)
If (feature 3 <= 1.65)
If (feature 3 <= 1.45)
Predict: 0.0
Else (feature 3 > 1.45)
If (feature 2 <= 4.95)
Predict: 0.0
Else (feature 2 > 4.95)
Predict: 2.0
Else (feature 3 > 1.65)
If (feature 0 <= 1.7833559100698644)
If (feature 0 <= 1.7664051342320237)
Predict: 2.0
Else (feature 0 > 1.7664051342320237)
Predict: 0.0
Else (feature 0 > 1.7833559100698644)
Predict: 2.0
Tree 15 (weight 1.0):
If (feature 2 <= 2.5)
Predict: 1.0
Else (feature 2 > 2.5)
If (feature 3 <= 1.75)
If (feature 2 <= 4.95)
Predict: 0.0
Else (feature 2 > 4.95)
If (feature 1 <= 8.125)
Predict: 2.0
Else (feature 1 > 8.125)
If (feature 0 <= 1.9095150692894909)
Predict: 0.0
Else (feature 0 > 1.9095150692894909)
Predict: 2.0
Else (feature 3 > 1.75)
Predict: 2.0
Tree 16 (weight 1.0):
If (feature 3 <= 0.8)
Predict: 1.0
Else (feature 3 > 0.8)
If (feature 0 <= 1.7491620461964392)
Predict: 0.0
Else (feature 0 > 1.7491620461964392)
If (feature 3 <= 1.75)
If (feature 2 <= 4.75)
Predict: 0.0
Else (feature 2 > 4.75)
If (feature 0 <= 1.8164190316151556)
Predict: 2.0
Else (feature 0 > 1.8164190316151556)
Predict: 0.0
Else (feature 3 > 1.75)
Predict: 2.0
Tree 17 (weight 1.0):
If (feature 0 <= 1.695573522904327)
If (feature 2 <= 1.65)
Predict: 1.0
Else (feature 2 > 1.65)
Predict: 0.0
Else (feature 0 > 1.695573522904327)
If (feature 2 <= 4.75)
If (feature 2 <= 2.5)
Predict: 1.0
Else (feature 2 > 2.5)
Predict: 0.0
Else (feature 2 > 4.75)
If (feature 3 <= 1.75)
If (feature 1 <= 5.0649999999999995)
Predict: 2.0
Else (feature 1 > 5.0649999999999995)
If (feature 3 <= 1.65)
Predict: 0.0
Else (feature 3 > 1.65)
Predict: 0.0
Else (feature 3 > 1.75)
Predict: 2.0
Tree 18 (weight 1.0):
If (feature 3 <= 0.8)
Predict: 1.0
Else (feature 3 > 0.8)
If (feature 3 <= 1.65)
Predict: 0.0
Else (feature 3 > 1.65)
If (feature 0 <= 1.7833559100698644)
Predict: 0.0
Else (feature 0 > 1.7833559100698644)
Predict: 2.0
Tree 19 (weight 1.0):
If (feature 2 <= 2.5)
Predict: 1.0
Else (feature 2 > 2.5)
If (feature 2 <= 4.95)
If (feature 1 <= 8.705)
Predict: 0.0
Else (feature 1 > 8.705)
If (feature 2 <= 4.85)
Predict: 0.0
Else (feature 2 > 4.85)
If (feature 0 <= 1.8164190316151556)
Predict: 2.0
Else (feature 0 > 1.8164190316151556)
Predict: 0.0
Else (feature 2 > 4.95)
Predict: 2.0
如您所见,这种格式对于传递到我见过的可视化决策树图形的许多漂亮方法之一来说并不是最佳的(例如 revolution analytics or statmethods )
截至今天(Spark 2.4.0 版本已经获得批准并等待官方公告)你最好的选择*,不涉及复杂的第 3 方工具(例如你可以看看 MLeap),可能是 and read back :
ml_stage(iris_prediction_model, "random_forest") %>%
ml_save("/tmp/model")
rf_spec <- spark_read_parquet(sc, "rf", "/tmp/model/data/")
结果将是具有以下架构的 Spark DataFrame
:
rf_spec %>%
spark_dataframe() %>%
invoke("schema") %>% invoke("treeString") %>%
cat(sep = "\n")
root
|-- treeID: integer (nullable = true)
|-- nodeData: struct (nullable = true)
| |-- id: integer (nullable = true)
| |-- prediction: double (nullable = true)
| |-- impurity: double (nullable = true)
| |-- impurityStats: array (nullable = true)
| | |-- element: double (containsNull = true)
| |-- gain: double (nullable = true)
| |-- leftChild: integer (nullable = true)
| |-- rightChild: integer (nullable = true)
| |-- split: struct (nullable = true)
| | |-- featureIndex: integer (nullable = true)
| | |-- leftCategoriesOrThreshold: array (nullable = true)
| | | |-- element: double (containsNull = true)
| | |-- numCategories: integer (nullable = true)
提供有关所有节点和拆分的信息。
可以使用列元数据检索要素映射:
meta <- iris_predictions %>%
select(features) %>%
spark_dataframe() %>%
invoke("schema") %>% invoke("apply", 0L) %>%
invoke("metadata") %>%
invoke("getMetadata", "ml_attr") %>%
invoke("getMetadata", "attrs") %>%
invoke("json") %>%
jsonlite::fromJSON() %>%
dplyr::bind_rows() %>%
copy_to(sc, .) %>%
rename(featureIndex = idx)
meta
# Source: spark<?> [?? x 2]
featureIndex name
* <int> <chr>
1 0 Sepal_Length
2 1 Sepal_Width
3 2 Petal_Length
4 3 Petal_Width
以及您已经检索到的标签映射:
labels <- tibble(prediction = seq_along(iris_labels) - 1, label = iris_labels) %>%
copy_to(sc, .)
最后你可以组合所有这些:
full_rf_spec <- rf_spec %>%
spark_dataframe() %>%
invoke("selectExpr", list("treeID", "nodeData.*", "nodeData.split.*")) %>%
sdf_register() %>%
select(-split, -impurityStats) %>%
left_join(meta, by = "featureIndex") %>%
left_join(labels, by = "prediction")
full_rf_spec
# Source: spark<?> [?? x 12]
treeID id prediction impurity gain leftChild rightChild featureIndex
* <int> <int> <dbl> <dbl> <dbl> <int> <int> <int>
1 0 0 1 0.636 0.379 1 2 2
2 0 1 1 0 -1 -1 -1 -1
3 0 2 0 0.440 0.367 3 8 2
4 0 3 0 0.0555 0.0269 4 5 3
5 0 4 0 0 -1 -1 -1 -1
6 0 5 0 0.5 0.5 6 7 0
7 0 6 0 0 -1 -1 -1 -1
8 0 7 2 0 -1 -1 -1 -1
9 0 8 2 0.111 0.0225 9 12 2
10 0 9 2 0.375 0.375 10 11 1
# ... with more rows, and 4 more variables: leftCategoriesOrThreshold <list>,
# numCategories <int>, name <chr>, label <chr>
由 treeID
收集和分离,应该提供足够的信息**来模拟树状对象(您可以通过检查 rpart::rpart.object
documentation and/or unclass
ing an rpart
model. tree::tree
来更好地理解所需的结构,这需要更少的工作,但它的绘图实用程序远非令人印象深刻),并构建一个像样的情节。
另一种方法是使用 Sparklyr2PMML 将数据导出到 PMML 并使用此表示。
您还可以查看 ,建议使用第三方 Python 包来解决同样的问题。
如果你不需要任何花哨的东西,你可以用 igraph
:
创建一个粗略的情节
library(igraph)
gframe <- full_rf_spec %>%
filter(treeID == 0) %>% # Take the first tree
mutate(
leftCategoriesOrThreshold = ifelse(
size(leftCategoriesOrThreshold) == 1,
# Continuous variable case
concat("<= ", round(concat_ws("", leftCategoriesOrThreshold), 3)),
# Categorical variable case. Decoding variables might be involved
# but can be achieved if needed, using column metadata or indexer labels
concat("in {", concat_ws(",", leftCategoriesOrThreshold), "}")
),
name = coalesce(name, label)) %>%
select(
id, label, impurity, gain,
leftChild, rightChild, leftCategoriesOrThreshold, name) %>%
collect()
vertices <- gframe %>% rename(label = name, name = id)
edges <- gframe %>%
transmute(from = id, to = leftChild, label = leftCategoriesOrThreshold) %>%
union_all(gframe %>% select(from = id, to = rightChild)) %>%
filter(to != -1)
g <- igraph::graph_from_data_frame(edges, vertices = vertices)
plot(
g, layout = layout_as_tree(g, root = c(1)),
vertex.shape = "rectangle", vertex.size = 45)
* 它应该在不久的将来得到改进,新引入的格式不可知的 ML 编写器 API(它已经支持选定模型的 PMML 编写器。希望新的模型和格式会随之而来)。
** 如果您使用分类特征,您可能希望将 leftCategoriesOrThreshold
映射到相应的索引级别。
如果特征向量包含分类变量,jsonlite::fromJSON()
的输出将包含 nominal
组。例如,如果您的索引列 foo
具有三个级别,在第一个位置组装,它将是这样的:
$nominal
vals idx name
1 a, b, c 1 foo
其中 vals
列是可变长度向量的列表。
length(meta$nominal$vals[[1]])
[1] 3
标签对应于此结构的索引,因此在示例中:
a
有标签0.0(不是说标签是双精度浮点数,编号从0.0开始)
b
有标签 1.0
依此类推,如果您使用 leftCategoriesOrThreshold
拆分等于 c(0.0, 2.0)
,则表示拆分在标签 {"a", "c"}
.
上
另请注意,如果存在分类数据,您可能必须在调用 copy_to
之前对其进行处理 - 目前看来它不支持复杂字段。
在 Spark <= 2.3 中,您将不得不使用 R 代码进行映射(在局部结构上,一些 purrr
应该就可以了)。在 Spark 2.4 中(在 sparklyr
AFAIK 中尚不支持)可能更容易直接使用 Spark 的 JSON reader 读取元数据并使用其高阶函数进行映射。
对于如何将树信息从 sparklyr 的 ml_decision_tree_classifier、ml_gbt_classifier 或 ml_random_forest_classifier 模型转换为 a.) 其他人可以理解的格式,有没有人有任何建议? R 树相关库和(最终)b.) 非技术消费树的可视化?这将包括从矢量汇编程序期间生成的替换字符串索引值转换回实际特征名称的能力。
为了提供示例,以下代码从 a sparklyr blog post 中大量复制:
library(sparklyr)
library(dplyr)
# If needed, install Spark locally via `spark_install()`
sc <- spark_connect(master = "local")
iris_tbl <- copy_to(sc, iris)
# split the data into train and validation sets
iris_data <- iris_tbl %>%
sdf_partition(train = 2/3, validation = 1/3, seed = 123)
iris_pipeline <- ml_pipeline(sc) %>%
ft_dplyr_transformer(
iris_data$train %>%
mutate(Sepal_Length = log(Sepal_Length),
Sepal_Width = Sepal_Width ^ 2)
) %>%
ft_string_indexer("Species", "label")
iris_pipeline_model <- iris_pipeline %>%
ml_fit(iris_data$train)
iris_vector_assembler <- ft_vector_assembler(
sc,
input_cols = setdiff(colnames(iris_data$train), "Species"),
output_col = "features"
)
random_forest <- ml_random_forest_classifier(sc,features_col = "features")
# obtain the labels from the fitted StringIndexerModel
iris_labels <- iris_pipeline_model %>%
ml_stage("string_indexer") %>%
ml_labels()
# IndexToString will convert the predicted numeric values back to class labels
iris_index_to_string <- ft_index_to_string(sc, "prediction", "predicted_label",
labels = iris_labels)
# construct a pipeline with these stages
iris_prediction_pipeline <- ml_pipeline(
iris_pipeline, # pipeline from previous section
iris_vector_assembler,
random_forest,
iris_index_to_string
)
# fit to data and make some predictions
iris_prediction_model <- iris_prediction_pipeline %>%
ml_fit(iris_data$train)
iris_predictions <- iris_prediction_model %>%
ml_transform(iris_data$validation)
iris_predictions %>%
select(Species, label:predicted_label) %>%
glimpse()
根据 here 的建议反复试验后,我能够以 "if/else" 格式转换为字符串打印出基础决策树的公式:
model_stage <- iris_prediction_model$stages[[3]]
spark_jobj(model_stage) %>% invoke(., "toDebugString") %>% cat()
##print out below##
RandomForestClassificationModel (uid=random_forest_classifier_5c6a1934c8e) with 20 trees
Tree 0 (weight 1.0):
If (feature 2 <= 2.5)
Predict: 1.0
Else (feature 2 > 2.5)
If (feature 2 <= 4.95)
If (feature 3 <= 1.65)
Predict: 0.0
Else (feature 3 > 1.65)
If (feature 0 <= 1.7833559100698644)
Predict: 0.0
Else (feature 0 > 1.7833559100698644)
Predict: 2.0
Else (feature 2 > 4.95)
If (feature 2 <= 5.05)
If (feature 1 <= 6.505000000000001)
Predict: 2.0
Else (feature 1 > 6.505000000000001)
Predict: 0.0
Else (feature 2 > 5.05)
Predict: 2.0
Tree 1 (weight 1.0):
If (feature 3 <= 0.8)
Predict: 1.0
Else (feature 3 > 0.8)
If (feature 3 <= 1.75)
If (feature 1 <= 5.0649999999999995)
If (feature 3 <= 1.05)
Predict: 0.0
Else (feature 3 > 1.05)
If (feature 0 <= 1.8000241202036602)
Predict: 2.0
Else (feature 0 > 1.8000241202036602)
Predict: 0.0
Else (feature 1 > 5.0649999999999995)
If (feature 0 <= 1.8000241202036602)
Predict: 0.0
Else (feature 0 > 1.8000241202036602)
If (feature 2 <= 5.05)
Predict: 0.0
Else (feature 2 > 5.05)
Predict: 2.0
Else (feature 3 > 1.75)
Predict: 2.0
Tree 2 (weight 1.0):
If (feature 3 <= 0.8)
Predict: 1.0
Else (feature 3 > 0.8)
If (feature 0 <= 1.7664051342320237)
Predict: 0.0
Else (feature 0 > 1.7664051342320237)
If (feature 3 <= 1.45)
If (feature 2 <= 4.85)
Predict: 0.0
Else (feature 2 > 4.85)
Predict: 2.0
Else (feature 3 > 1.45)
If (feature 3 <= 1.65)
If (feature 1 <= 8.125)
Predict: 2.0
Else (feature 1 > 8.125)
Predict: 0.0
Else (feature 3 > 1.65)
Predict: 2.0
Tree 3 (weight 1.0):
If (feature 0 <= 1.6675287895788053)
If (feature 2 <= 2.5)
Predict: 1.0
Else (feature 2 > 2.5)
Predict: 0.0
Else (feature 0 > 1.6675287895788053)
If (feature 3 <= 1.75)
If (feature 3 <= 1.55)
If (feature 1 <= 7.025)
If (feature 2 <= 4.55)
Predict: 0.0
Else (feature 2 > 4.55)
Predict: 2.0
Else (feature 1 > 7.025)
Predict: 0.0
Else (feature 3 > 1.55)
If (feature 2 <= 5.05)
Predict: 0.0
Else (feature 2 > 5.05)
Predict: 2.0
Else (feature 3 > 1.75)
Predict: 2.0
Tree 4 (weight 1.0):
If (feature 2 <= 4.85)
If (feature 2 <= 2.5)
Predict: 1.0
Else (feature 2 > 2.5)
Predict: 0.0
Else (feature 2 > 4.85)
If (feature 2 <= 5.05)
If (feature 0 <= 1.8484238118815566)
Predict: 2.0
Else (feature 0 > 1.8484238118815566)
Predict: 0.0
Else (feature 2 > 5.05)
Predict: 2.0
Tree 5 (weight 1.0):
If (feature 2 <= 1.65)
Predict: 1.0
Else (feature 2 > 1.65)
If (feature 3 <= 1.65)
If (feature 0 <= 1.8325494627242664)
Predict: 0.0
Else (feature 0 > 1.8325494627242664)
If (feature 2 <= 4.95)
Predict: 0.0
Else (feature 2 > 4.95)
Predict: 2.0
Else (feature 3 > 1.65)
Predict: 2.0
Tree 6 (weight 1.0):
If (feature 2 <= 2.5)
Predict: 1.0
Else (feature 2 > 2.5)
If (feature 2 <= 5.05)
If (feature 3 <= 1.75)
Predict: 0.0
Else (feature 3 > 1.75)
Predict: 2.0
Else (feature 2 > 5.05)
Predict: 2.0
Tree 7 (weight 1.0):
If (feature 3 <= 0.55)
Predict: 1.0
Else (feature 3 > 0.55)
If (feature 3 <= 1.65)
If (feature 2 <= 4.75)
Predict: 0.0
Else (feature 2 > 4.75)
Predict: 2.0
Else (feature 3 > 1.65)
If (feature 2 <= 4.85)
If (feature 0 <= 1.7833559100698644)
Predict: 0.0
Else (feature 0 > 1.7833559100698644)
Predict: 2.0
Else (feature 2 > 4.85)
Predict: 2.0
Tree 8 (weight 1.0):
If (feature 3 <= 0.8)
Predict: 1.0
Else (feature 3 > 0.8)
If (feature 3 <= 1.85)
If (feature 2 <= 4.85)
Predict: 0.0
Else (feature 2 > 4.85)
If (feature 0 <= 1.8794359129669855)
Predict: 2.0
Else (feature 0 > 1.8794359129669855)
If (feature 3 <= 1.55)
Predict: 0.0
Else (feature 3 > 1.55)
Predict: 0.0
Else (feature 3 > 1.85)
Predict: 2.0
Tree 9 (weight 1.0):
If (feature 2 <= 2.5)
Predict: 1.0
Else (feature 2 > 2.5)
If (feature 2 <= 4.95)
Predict: 0.0
Else (feature 2 > 4.95)
Predict: 2.0
Tree 10 (weight 1.0):
If (feature 3 <= 0.8)
Predict: 1.0
Else (feature 3 > 0.8)
If (feature 2 <= 4.95)
Predict: 0.0
Else (feature 2 > 4.95)
If (feature 2 <= 5.05)
If (feature 3 <= 1.55)
Predict: 2.0
Else (feature 3 > 1.55)
If (feature 3 <= 1.75)
Predict: 0.0
Else (feature 3 > 1.75)
Predict: 2.0
Else (feature 2 > 5.05)
Predict: 2.0
Tree 11 (weight 1.0):
If (feature 3 <= 0.8)
Predict: 1.0
Else (feature 3 > 0.8)
If (feature 2 <= 5.05)
If (feature 2 <= 4.75)
Predict: 0.0
Else (feature 2 > 4.75)
If (feature 3 <= 1.75)
Predict: 0.0
Else (feature 3 > 1.75)
Predict: 2.0
Else (feature 2 > 5.05)
Predict: 2.0
Tree 12 (weight 1.0):
If (feature 3 <= 0.8)
Predict: 1.0
Else (feature 3 > 0.8)
If (feature 3 <= 1.75)
If (feature 3 <= 1.35)
Predict: 0.0
Else (feature 3 > 1.35)
If (feature 0 <= 1.695573522904327)
Predict: 0.0
Else (feature 0 > 1.695573522904327)
If (feature 1 <= 8.125)
Predict: 2.0
Else (feature 1 > 8.125)
Predict: 0.0
Else (feature 3 > 1.75)
If (feature 0 <= 1.7833559100698644)
Predict: 0.0
Else (feature 0 > 1.7833559100698644)
Predict: 2.0
Tree 13 (weight 1.0):
If (feature 3 <= 0.55)
Predict: 1.0
Else (feature 3 > 0.55)
If (feature 2 <= 4.95)
If (feature 2 <= 4.75)
Predict: 0.0
Else (feature 2 > 4.75)
If (feature 0 <= 1.8000241202036602)
If (feature 1 <= 9.305)
Predict: 2.0
Else (feature 1 > 9.305)
Predict: 0.0
Else (feature 0 > 1.8000241202036602)
Predict: 0.0
Else (feature 2 > 4.95)
Predict: 2.0
Tree 14 (weight 1.0):
If (feature 2 <= 2.5)
Predict: 1.0
Else (feature 2 > 2.5)
If (feature 3 <= 1.65)
If (feature 3 <= 1.45)
Predict: 0.0
Else (feature 3 > 1.45)
If (feature 2 <= 4.95)
Predict: 0.0
Else (feature 2 > 4.95)
Predict: 2.0
Else (feature 3 > 1.65)
If (feature 0 <= 1.7833559100698644)
If (feature 0 <= 1.7664051342320237)
Predict: 2.0
Else (feature 0 > 1.7664051342320237)
Predict: 0.0
Else (feature 0 > 1.7833559100698644)
Predict: 2.0
Tree 15 (weight 1.0):
If (feature 2 <= 2.5)
Predict: 1.0
Else (feature 2 > 2.5)
If (feature 3 <= 1.75)
If (feature 2 <= 4.95)
Predict: 0.0
Else (feature 2 > 4.95)
If (feature 1 <= 8.125)
Predict: 2.0
Else (feature 1 > 8.125)
If (feature 0 <= 1.9095150692894909)
Predict: 0.0
Else (feature 0 > 1.9095150692894909)
Predict: 2.0
Else (feature 3 > 1.75)
Predict: 2.0
Tree 16 (weight 1.0):
If (feature 3 <= 0.8)
Predict: 1.0
Else (feature 3 > 0.8)
If (feature 0 <= 1.7491620461964392)
Predict: 0.0
Else (feature 0 > 1.7491620461964392)
If (feature 3 <= 1.75)
If (feature 2 <= 4.75)
Predict: 0.0
Else (feature 2 > 4.75)
If (feature 0 <= 1.8164190316151556)
Predict: 2.0
Else (feature 0 > 1.8164190316151556)
Predict: 0.0
Else (feature 3 > 1.75)
Predict: 2.0
Tree 17 (weight 1.0):
If (feature 0 <= 1.695573522904327)
If (feature 2 <= 1.65)
Predict: 1.0
Else (feature 2 > 1.65)
Predict: 0.0
Else (feature 0 > 1.695573522904327)
If (feature 2 <= 4.75)
If (feature 2 <= 2.5)
Predict: 1.0
Else (feature 2 > 2.5)
Predict: 0.0
Else (feature 2 > 4.75)
If (feature 3 <= 1.75)
If (feature 1 <= 5.0649999999999995)
Predict: 2.0
Else (feature 1 > 5.0649999999999995)
If (feature 3 <= 1.65)
Predict: 0.0
Else (feature 3 > 1.65)
Predict: 0.0
Else (feature 3 > 1.75)
Predict: 2.0
Tree 18 (weight 1.0):
If (feature 3 <= 0.8)
Predict: 1.0
Else (feature 3 > 0.8)
If (feature 3 <= 1.65)
Predict: 0.0
Else (feature 3 > 1.65)
If (feature 0 <= 1.7833559100698644)
Predict: 0.0
Else (feature 0 > 1.7833559100698644)
Predict: 2.0
Tree 19 (weight 1.0):
If (feature 2 <= 2.5)
Predict: 1.0
Else (feature 2 > 2.5)
If (feature 2 <= 4.95)
If (feature 1 <= 8.705)
Predict: 0.0
Else (feature 1 > 8.705)
If (feature 2 <= 4.85)
Predict: 0.0
Else (feature 2 > 4.85)
If (feature 0 <= 1.8164190316151556)
Predict: 2.0
Else (feature 0 > 1.8164190316151556)
Predict: 0.0
Else (feature 2 > 4.95)
Predict: 2.0
如您所见,这种格式对于传递到我见过的可视化决策树图形的许多漂亮方法之一来说并不是最佳的(例如 revolution analytics or statmethods )
截至今天(Spark 2.4.0 版本已经获得批准并等待官方公告)你最好的选择*,不涉及复杂的第 3 方工具(例如你可以看看 MLeap),可能是
ml_stage(iris_prediction_model, "random_forest") %>%
ml_save("/tmp/model")
rf_spec <- spark_read_parquet(sc, "rf", "/tmp/model/data/")
结果将是具有以下架构的 Spark DataFrame
:
rf_spec %>%
spark_dataframe() %>%
invoke("schema") %>% invoke("treeString") %>%
cat(sep = "\n")
root
|-- treeID: integer (nullable = true)
|-- nodeData: struct (nullable = true)
| |-- id: integer (nullable = true)
| |-- prediction: double (nullable = true)
| |-- impurity: double (nullable = true)
| |-- impurityStats: array (nullable = true)
| | |-- element: double (containsNull = true)
| |-- gain: double (nullable = true)
| |-- leftChild: integer (nullable = true)
| |-- rightChild: integer (nullable = true)
| |-- split: struct (nullable = true)
| | |-- featureIndex: integer (nullable = true)
| | |-- leftCategoriesOrThreshold: array (nullable = true)
| | | |-- element: double (containsNull = true)
| | |-- numCategories: integer (nullable = true)
提供有关所有节点和拆分的信息。
可以使用列元数据检索要素映射:
meta <- iris_predictions %>%
select(features) %>%
spark_dataframe() %>%
invoke("schema") %>% invoke("apply", 0L) %>%
invoke("metadata") %>%
invoke("getMetadata", "ml_attr") %>%
invoke("getMetadata", "attrs") %>%
invoke("json") %>%
jsonlite::fromJSON() %>%
dplyr::bind_rows() %>%
copy_to(sc, .) %>%
rename(featureIndex = idx)
meta
# Source: spark<?> [?? x 2]
featureIndex name
* <int> <chr>
1 0 Sepal_Length
2 1 Sepal_Width
3 2 Petal_Length
4 3 Petal_Width
以及您已经检索到的标签映射:
labels <- tibble(prediction = seq_along(iris_labels) - 1, label = iris_labels) %>%
copy_to(sc, .)
最后你可以组合所有这些:
full_rf_spec <- rf_spec %>%
spark_dataframe() %>%
invoke("selectExpr", list("treeID", "nodeData.*", "nodeData.split.*")) %>%
sdf_register() %>%
select(-split, -impurityStats) %>%
left_join(meta, by = "featureIndex") %>%
left_join(labels, by = "prediction")
full_rf_spec
# Source: spark<?> [?? x 12]
treeID id prediction impurity gain leftChild rightChild featureIndex
* <int> <int> <dbl> <dbl> <dbl> <int> <int> <int>
1 0 0 1 0.636 0.379 1 2 2
2 0 1 1 0 -1 -1 -1 -1
3 0 2 0 0.440 0.367 3 8 2
4 0 3 0 0.0555 0.0269 4 5 3
5 0 4 0 0 -1 -1 -1 -1
6 0 5 0 0.5 0.5 6 7 0
7 0 6 0 0 -1 -1 -1 -1
8 0 7 2 0 -1 -1 -1 -1
9 0 8 2 0.111 0.0225 9 12 2
10 0 9 2 0.375 0.375 10 11 1
# ... with more rows, and 4 more variables: leftCategoriesOrThreshold <list>,
# numCategories <int>, name <chr>, label <chr>
由 treeID
收集和分离,应该提供足够的信息**来模拟树状对象(您可以通过检查 rpart::rpart.object
documentation and/or unclass
ing an rpart
model. tree::tree
来更好地理解所需的结构,这需要更少的工作,但它的绘图实用程序远非令人印象深刻),并构建一个像样的情节。
另一种方法是使用 Sparklyr2PMML 将数据导出到 PMML 并使用此表示。
您还可以查看
如果你不需要任何花哨的东西,你可以用 igraph
:
library(igraph)
gframe <- full_rf_spec %>%
filter(treeID == 0) %>% # Take the first tree
mutate(
leftCategoriesOrThreshold = ifelse(
size(leftCategoriesOrThreshold) == 1,
# Continuous variable case
concat("<= ", round(concat_ws("", leftCategoriesOrThreshold), 3)),
# Categorical variable case. Decoding variables might be involved
# but can be achieved if needed, using column metadata or indexer labels
concat("in {", concat_ws(",", leftCategoriesOrThreshold), "}")
),
name = coalesce(name, label)) %>%
select(
id, label, impurity, gain,
leftChild, rightChild, leftCategoriesOrThreshold, name) %>%
collect()
vertices <- gframe %>% rename(label = name, name = id)
edges <- gframe %>%
transmute(from = id, to = leftChild, label = leftCategoriesOrThreshold) %>%
union_all(gframe %>% select(from = id, to = rightChild)) %>%
filter(to != -1)
g <- igraph::graph_from_data_frame(edges, vertices = vertices)
plot(
g, layout = layout_as_tree(g, root = c(1)),
vertex.shape = "rectangle", vertex.size = 45)
* 它应该在不久的将来得到改进,新引入的格式不可知的 ML 编写器 API(它已经支持选定模型的 PMML 编写器。希望新的模型和格式会随之而来)。
** 如果您使用分类特征,您可能希望将 leftCategoriesOrThreshold
映射到相应的索引级别。
如果特征向量包含分类变量,jsonlite::fromJSON()
的输出将包含 nominal
组。例如,如果您的索引列 foo
具有三个级别,在第一个位置组装,它将是这样的:
$nominal
vals idx name
1 a, b, c 1 foo
其中 vals
列是可变长度向量的列表。
length(meta$nominal$vals[[1]])
[1] 3
标签对应于此结构的索引,因此在示例中:
a
有标签0.0(不是说标签是双精度浮点数,编号从0.0开始)b
有标签 1.0
依此类推,如果您使用 leftCategoriesOrThreshold
拆分等于 c(0.0, 2.0)
,则表示拆分在标签 {"a", "c"}
.
另请注意,如果存在分类数据,您可能必须在调用 copy_to
之前对其进行处理 - 目前看来它不支持复杂字段。
在 Spark <= 2.3 中,您将不得不使用 R 代码进行映射(在局部结构上,一些 purrr
应该就可以了)。在 Spark 2.4 中(在 sparklyr
AFAIK 中尚不支持)可能更容易直接使用 Spark 的 JSON reader 读取元数据并使用其高阶函数进行映射。