如何将 "Auto model" 从 rapid miner 保存到本地磁盘
How can I save an "Auto model" from rapid miner to local disk
我已经使用 Rapid Miner 建立了一个回归模型。微调模型后,精度很好。现在我想对下一组数据使用相同的模型文件 运行。有什么方法可以将 RapidMiner 分类器模型导出到本地磁盘并预测新数据。
要访问 AutoModel 结果,请在结果视图中单击 "Open Process"。然后您可以右键单击第三个输出端口(对于模型)或 re-run 过程,然后在模型选项卡 header.
上通过 right-clicking 存储模型
通常,您可以将任何模型存储在 RapidMiner 存储库中。通过结果视图中 header 选项卡上的 right-clicking,或在模型输出端口后使用 "Store" 运算符。
如果您随后想要 运行 新数据模型,您可以使用 "Apply Model" 运算符,存储模型和新数据集。
查看示例教程过程(只需将 XML 复制并粘贴到您的过程 window 中)。
您还可以查看 RapidMiner 社区以获取更多培训 material:
https://community.rapidminer.com/t5/Machine-Learning-Essentials-K-nn/tkb-p/IntroductoryML
<?xml version="1.0" encoding="UTF-8"?><process version="9.0.003">
<context>
<input/>
<output/>
<macros/>
</context>
<operator activated="true" class="process" compatibility="6.0.002" expanded="true" name="Process" origin="GENERATED_TUTORIAL">
<process expanded="true">
<operator activated="true" class="retrieve" compatibility="9.0.003" expanded="true" height="68" name="Retrieve Polynomial" origin="GENERATED_TUTORIAL" width="90" x="112" y="85">
<parameter key="repository_entry" value="//Samples/data/Polynomial"/>
</operator>
<operator activated="true" class="split_data" compatibility="9.0.003" expanded="true" height="103" name="Split Data" origin="GENERATED_TUTORIAL" width="90" x="246" y="85">
<enumeration key="partitions">
<parameter key="ratio" value="0.8"/>
<parameter key="ratio" value="0.2"/>
</enumeration>
</operator>
<operator activated="true" class="select_attributes" compatibility="9.0.003" expanded="true" height="82" name="Select Attributes" origin="GENERATED_TUTORIAL" width="90" x="447" y="289">
<parameter key="attribute_filter_type" value="single"/>
<parameter key="attribute" value="label"/>
<parameter key="invert_selection" value="true"/>
<parameter key="include_special_attributes" value="true"/>
</operator>
<operator activated="true" class="linear_regression" compatibility="9.0.003" expanded="true" height="103" name="Linear Regression" origin="GENERATED_TUTORIAL" width="90" x="447" y="85"/>
<operator activated="true" class="apply_model" compatibility="7.1.001" expanded="true" height="82" name="Apply Model" origin="GENERATED_TUTORIAL" width="90" x="715" y="187">
<list key="application_parameters"/>
</operator>
<connect from_op="Retrieve Polynomial" from_port="output" to_op="Split Data" to_port="example set"/>
<connect from_op="Split Data" from_port="partition 1" to_op="Linear Regression" to_port="training set"/>
<connect from_op="Split Data" from_port="partition 2" to_op="Select Attributes" to_port="example set input"/>
<connect from_op="Select Attributes" from_port="example set output" to_op="Apply Model" to_port="unlabelled data"/>
<connect from_op="Linear Regression" from_port="model" to_op="Apply Model" to_port="model"/>
<connect from_op="Apply Model" from_port="labelled data" to_port="result 2"/>
<connect from_op="Apply Model" from_port="model" to_port="result 1"/>
<portSpacing port="source_input 1" spacing="0"/>
<portSpacing port="sink_result 1" spacing="0"/>
<portSpacing port="sink_result 2" spacing="0"/>
<portSpacing port="sink_result 3" spacing="0"/>
<description align="center" color="green" colored="true" height="189" resized="true" width="210" x="391" y="23">Generating a model within the training of a linear regression</description>
<description align="center" color="blue" colored="true" height="188" resized="true" width="309" x="74" y="23">Loading labelled data</description>
<description align="center" color="purple" colored="true" height="187" resized="true" width="208" x="390" y="250">Unlabelled data<br><br><br><br><br><br><br>Removing the label to emulate an unlabelled data set.</description>
<description align="left" color="yellow" colored="false" height="305" resized="true" width="325" x="645" y="134">Applying the model obtained from training to an unlabelled data set<br><br><br><br><br><br><br><br>Labelled data output:<br>ExampleSet from the unlabelled input port enriched with predictions obtained from applying the model.<br>Model output:<br>Have a look into the Results view showing the formula for linear regression with coefficients obtained from the training process.<br>
</description>
</process>
</operator>
</process>
我已经使用 Rapid Miner 建立了一个回归模型。微调模型后,精度很好。现在我想对下一组数据使用相同的模型文件 运行。有什么方法可以将 RapidMiner 分类器模型导出到本地磁盘并预测新数据。
要访问 AutoModel 结果,请在结果视图中单击 "Open Process"。然后您可以右键单击第三个输出端口(对于模型)或 re-run 过程,然后在模型选项卡 header.
上通过 right-clicking 存储模型通常,您可以将任何模型存储在 RapidMiner 存储库中。通过结果视图中 header 选项卡上的 right-clicking,或在模型输出端口后使用 "Store" 运算符。
如果您随后想要 运行 新数据模型,您可以使用 "Apply Model" 运算符,存储模型和新数据集。
查看示例教程过程(只需将 XML 复制并粘贴到您的过程 window 中)。
您还可以查看 RapidMiner 社区以获取更多培训 material:
https://community.rapidminer.com/t5/Machine-Learning-Essentials-K-nn/tkb-p/IntroductoryML
<?xml version="1.0" encoding="UTF-8"?><process version="9.0.003">
<context>
<input/>
<output/>
<macros/>
</context>
<operator activated="true" class="process" compatibility="6.0.002" expanded="true" name="Process" origin="GENERATED_TUTORIAL">
<process expanded="true">
<operator activated="true" class="retrieve" compatibility="9.0.003" expanded="true" height="68" name="Retrieve Polynomial" origin="GENERATED_TUTORIAL" width="90" x="112" y="85">
<parameter key="repository_entry" value="//Samples/data/Polynomial"/>
</operator>
<operator activated="true" class="split_data" compatibility="9.0.003" expanded="true" height="103" name="Split Data" origin="GENERATED_TUTORIAL" width="90" x="246" y="85">
<enumeration key="partitions">
<parameter key="ratio" value="0.8"/>
<parameter key="ratio" value="0.2"/>
</enumeration>
</operator>
<operator activated="true" class="select_attributes" compatibility="9.0.003" expanded="true" height="82" name="Select Attributes" origin="GENERATED_TUTORIAL" width="90" x="447" y="289">
<parameter key="attribute_filter_type" value="single"/>
<parameter key="attribute" value="label"/>
<parameter key="invert_selection" value="true"/>
<parameter key="include_special_attributes" value="true"/>
</operator>
<operator activated="true" class="linear_regression" compatibility="9.0.003" expanded="true" height="103" name="Linear Regression" origin="GENERATED_TUTORIAL" width="90" x="447" y="85"/>
<operator activated="true" class="apply_model" compatibility="7.1.001" expanded="true" height="82" name="Apply Model" origin="GENERATED_TUTORIAL" width="90" x="715" y="187">
<list key="application_parameters"/>
</operator>
<connect from_op="Retrieve Polynomial" from_port="output" to_op="Split Data" to_port="example set"/>
<connect from_op="Split Data" from_port="partition 1" to_op="Linear Regression" to_port="training set"/>
<connect from_op="Split Data" from_port="partition 2" to_op="Select Attributes" to_port="example set input"/>
<connect from_op="Select Attributes" from_port="example set output" to_op="Apply Model" to_port="unlabelled data"/>
<connect from_op="Linear Regression" from_port="model" to_op="Apply Model" to_port="model"/>
<connect from_op="Apply Model" from_port="labelled data" to_port="result 2"/>
<connect from_op="Apply Model" from_port="model" to_port="result 1"/>
<portSpacing port="source_input 1" spacing="0"/>
<portSpacing port="sink_result 1" spacing="0"/>
<portSpacing port="sink_result 2" spacing="0"/>
<portSpacing port="sink_result 3" spacing="0"/>
<description align="center" color="green" colored="true" height="189" resized="true" width="210" x="391" y="23">Generating a model within the training of a linear regression</description>
<description align="center" color="blue" colored="true" height="188" resized="true" width="309" x="74" y="23">Loading labelled data</description>
<description align="center" color="purple" colored="true" height="187" resized="true" width="208" x="390" y="250">Unlabelled data<br><br><br><br><br><br><br>Removing the label to emulate an unlabelled data set.</description>
<description align="left" color="yellow" colored="false" height="305" resized="true" width="325" x="645" y="134">Applying the model obtained from training to an unlabelled data set<br><br><br><br><br><br><br><br>Labelled data output:<br>ExampleSet from the unlabelled input port enriched with predictions obtained from applying the model.<br>Model output:<br>Have a look into the Results view showing the formula for linear regression with coefficients obtained from the training process.<br>
</description>
</process>
</operator>
</process>