在导致性能问题之前,TensorFlow .record 文件可以有多大?

How large can a TensorFlow .record file be before it causes performance issues?

在 TensorFlow 对象检测 API 中,如果数据集包含 "more than a few thousand examples",noting that

,他们提倡分片

几千有点模糊,如果有更准确的答案就好了,比如文件大小。换句话说,.record 文件在开始导致性能问题之前可以有多大?分片数据时,我们的目标文件大小应该是多少?

TensorFlow 团队似乎建议使用 ~100MB 的分片。 https://www.tensorflow.org/guide/performance/overview You might also consider the performance implications related to batch size while training. https://www.pugetsystems.com/labs/hpc/GPU-Memory-Size-and-Deep-Learning-Performance-batch-size-12GB-vs-32GB----1080Ti-vs-Titan-V-vs-GV100-1146/