预训练的 Tensorflow 模型 RGB -> RGBY 通道扩展

Pretrained Tensorflow model RGB -> RGBY channel extension

我正在研究 protein analysis project. We receive the images* 具有 4 个过滤器(红色、绿色、蓝色和黄色)的蛋白质。这些 RGBY 通道中的每一个都包含独特的数据,因为使用不同的过滤器可以看到不同的细胞结构。

我们的想法是使用预训练网络,例如VGG19 并将通道数从默认的 3 扩展到 4。像这样:

(不好意思,我不能直接在10声望前加图,请按"Run code snippet"按钮可视化):

<img src="https://i.stack.imgur.com/TZKka.png" alt="Italian Trulli">

图片:将RGB扩展为RGBY的VGG模型

Y 通道应该是现有预训练通道的副本。然后就可以使用预训练的权重。

有没有人知道如何实现预训练网络的这种扩展?

* 拼贴画的作者 - 来自 Kaggle 的 Allunia,"Protein Atlas - Exploration and Baseline" 内核。

使用Keras apilayer.get_weights()layer.set_weights()功能。

为 4 层 VGG 创建模板结构(设置输入 shape=(width, height, 4))。然后将权重从 3 通道 RGB 模型加载到 4 通道作为 RGBB。

下面是执行该过程的代码。在顺序 VGG 的情况下,唯一需要修改的层是第一个卷积层。后续层的结构与通道数无关。

#!/usr/bin/env python3
# -*- coding: utf-8 -*-

from keras.applications.vgg19 import VGG19
from keras.models import Model

vgg19 = VGG19(weights='imagenet')
vgg19.summary() # To check which layers will be omitted in 'pretrained' model

# Load part of the VGG without the top layers into 'pretrained' model
pretrained = Model(inputs=vgg19.input, outputs=vgg19.get_layer('block5_pool').output)
pretrained.summary()

#%% Prepare model template with 4 input channels
config = pretrained.get_config() # run config['layers'][i] for reference
                                 # to restore layer-by layer structure

from keras.layers import Input, Conv2D, MaxPooling2D
from keras import optimizers

# For training from scratch change kernel_initializer to e.g.'VarianceScaling'
inputs = Input(shape=(224, 224, 4), name='input_17')
# block 1
x = Conv2D(64, (3,3), padding='same', activation='relu', kernel_initializer='zeros', name='block1_conv1')(inputs)
x = Conv2D(64, (3,3), padding='same', activation='relu', kernel_initializer='zeros', name='block1_conv2')(x)
x = MaxPooling2D(pool_size=(2, 2), name='block1_pool')(x)

# block 2
x = Conv2D(128, (3,3), padding='same', activation='relu', kernel_initializer='zeros', name='block2_conv1')(x)
x = Conv2D(128, (3,3), padding='same', activation='relu', kernel_initializer='zeros', name='block2_conv2')(x)
x = MaxPooling2D(pool_size=(2, 2), strides=(2,2), name='block2_pool')(x)

# block 3
x = Conv2D(256, (3,3), padding='same', activation='relu', kernel_initializer='zeros', name='block3_conv1')(x)
x = Conv2D(256, (3,3), padding='same', activation='relu', kernel_initializer='zeros', name='block3_conv2')(x)
x = Conv2D(256, (3,3), padding='same', activation='relu', kernel_initializer='zeros', name='block3_conv3')(x)
x = Conv2D(256, (3,3), padding='same', activation='relu', kernel_initializer='zeros', name='block3_conv4')(x)
x = MaxPooling2D(pool_size=(2, 2), strides=(2,2), name='block3_pool')(x)

# block 4
x = Conv2D(512, (3,3), padding='same', activation='relu', kernel_initializer='zeros', name='block4_conv1')(x)
x = Conv2D(512, (3,3), padding='same', activation='relu', kernel_initializer='zeros', name='block4_conv2')(x)
x = Conv2D(512, (3,3), padding='same', activation='relu', kernel_initializer='zeros', name='block4_conv3')(x)
x = Conv2D(512, (3,3), padding='same', activation='relu', kernel_initializer='zeros', name='block4_conv4')(x)
x = MaxPooling2D(pool_size=(2, 2), strides=(2,2), name='block4_pool')(x)

# block 5
x = Conv2D(512, (3,3), padding='same', activation='relu', kernel_initializer='zeros', name='block5_conv1')(x)
x = Conv2D(512, (3,3), padding='same', activation='relu', kernel_initializer='zeros', name='block5_conv2')(x)
x = Conv2D(512, (3,3), padding='same', activation='relu', kernel_initializer='zeros', name='block5_conv3')(x)
x = Conv2D(512, (3,3), padding='same', activation='relu', kernel_initializer='zeros', name='block5_conv4')(x)
x = MaxPooling2D(pool_size=(2, 2), strides=(2,2), name='block5_pool')(x)

vgg_template = Model(inputs=inputs, outputs=x)

vgg_template.compile(optimizer=optimizers.RMSprop(lr=2e-4),
                     loss='categorical_crossentropy',
                     metrics=['acc'])


#%% Rewrite the weight loading/modification function
import numpy as np

layers_to_modify = ['block1_conv1'] # Turns out the only layer that changes
                                    # shape due to 4th channel is the first
                                    # convolution layer.

for layer in pretrained.layers: # pretrained Model and template have the same
                                # layers, so it doesn't matter which to 
                                # iterate over.

    if layer.get_weights() != []: # Skip input, pooling and no weights layers

        target_layer = vgg_template.get_layer(name=layer.name)

        if layer.name in layers_to_modify:

            kernels = layer.get_weights()[0]
            biases  = layer.get_weights()[1]

            kernels_extra_channel = np.concatenate((kernels,
                                                    kernels[:,:,-1:,:]),
                                                    axis=-2) # For channels_last

            target_layer.set_weights([kernels_extra_channel, biases])

        else:
            target_layer.set_weights(layer.get_weights())


#%% Save 4 channel model populated with weights for futher use    

vgg_template.save('vgg19_modified_clear.hdf5')

除 RGBY 情况外,以下代码片段通常通过复制或删除层的权重and/or根据需要偏置矢量维度。请参阅 numpy documentation 了解 numpy.resize 的作用:在原始问题的情况下,它将 B-channel 权重复制到 Y-channel (或更一般地复制到任何更高的维度)。

import numpy as np
import tensorflow as tf
...

model = ...  # your RGBY model is here
pretrained_model = tf.keras.models.load_model(...)  # pretrained RGB model

# the following assumes that the layers match with the two models and
# only the shapes of weights and/or biases are different
for pretrained_layer, layer in zip(pretrained_model.layers, model.layers):
    pretrained = pretrained_layer.get_weights()
    target = layer.get_weights()
    if len(pretrained) == 0:  # skip input, pooling and other no weights layers
        continue
    try:  
        # set the pretrained weights as is whenever possible
        layer.set_weights(pretrained)
    except:
        # numpy.resize to the rescue whenever there is a shape mismatch
        for idx, (l1, l2) in enumerate(zip(pretrained, target)):
            target[idx] = np.resize(l1, l2.shape)

        layer.set_weights(target)