如何从多项式拟合中排除值?

How to exclude values from a polynomial fit?

我对我的数据拟合了一个多项式,如图:

使用脚本:

from scipy.optimize import curve_fit
import scipy.stats
from scipy import asarray as ar,exp

xdata = xvalues
ydata = yvalues

fittedParameters = numpy.polyfit(xdata, ydata + .00001005 , 3)
modelPredictions = numpy.polyval(fittedParameters, xdata) 

axes.plot(xdata, ydata,  '-')
xModel = numpy.linspace(min(xdata), max(xdata))
yModel = numpy.polyval(fittedParameters, xModel)

axes.plot(xModel, yModel)

我想排除 3.4 到 3.55 um 的区域。我怎样才能在我的脚本中做到这一点?我也有 NaN,我试图在原始 .fits 文件中删除它们。帮助将受到重视。

您可以屏蔽排除区域内的值,稍后将此屏蔽应用于您的拟合函数

# Using random data here, since you haven't provided sample data
xdata = numpy.arange(3,4,0.01)
ydata = 2* numpy.random.rand(len(xdata)) + xdata

# Create mask (boolean array) of values outside of your exclusion region
mask = (xdata < 3.4) | (xdata > 3.55)

# Do the fit on all data (for comparison)
fittedParameters = numpy.polyfit(xdata, ydata + .00001005 , 3)
modelPredictions = numpy.polyval(fittedParameters, xdata) 
xModel = numpy.linspace(min(xdata), max(xdata))
yModel = numpy.polyval(fittedParameters, xModel)

# Do the fit on the masked data (i.e. only that data, where mask == True)
fittedParameters1 = numpy.polyfit(xdata[mask], ydata[mask] + .00001005 , 3)
modelPredictions1 = numpy.polyval(fittedParameters1, xdata[mask]) 
xModel1 = numpy.linspace(min(xdata[mask]), max(xdata[mask]))
yModel1 = numpy.polyval(fittedParameters1, xModel1)

# Plot stuff
axes.plot(xdata, ydata,  '-')
axes.plot(xModel, yModel)        # orange
axes.plot(xModel1, yModel1)      # green

给出

绿色曲线现在是排除了 3.4 < xdata 3.55 的拟合。橙色曲线为未排除的装修(对比)

如果您想在 xdata 中排除可能的 nans,您可以通过 numpy.isnan() 函数增强 mask,例如

# Create mask (boolean array) of values outside of your exclusion AND which ar not nan
xdata < 3.4) | (xdata > 3.55) & ~numpy.isnan(xdata)