python 中的矩阵匹配

Matrix match in python

如何在大矩阵中找到最适合小矩阵的"match"? 例如:

 small=[[1,2,3],
        [4,5,6],
        [7,8,9]]



    big=[[2,4,2,3,5],
         [6,0,1,9,0],
         [2,8,2,1,0],
         [7,7,4,2,1]]

匹配被定义为矩阵中数字的差异,所以位置 (1,1) 的匹配就好像小矩阵中的数字 5 会在大矩阵中的数字 0 上(所以坐标中小矩阵的中心数字大矩阵的 (1,1)。

位置(1,1)的匹配值为: m(1,1)=|2−1|+|4−2|+|2−3|+|6−4|+|0−5|+|1−6|+|2−7|+| 8−8|+|2−9|=28

目标是在这些矩阵中找到可能的最小差异。

小矩阵总是有奇数行和列,所以很容易找到它的中心。

手工完成:

small=[[1,2,3],
       [4,5,6],
       [7,8,9]]


big=[[2,4,2,3,5],
     [6,0,1,9,0],
     [2,8,2,1,0],
     [7,7,4,2,1]]

# collect all the sums    
summs= [] 

# k and j are the offset into big

for k in range(len(big)-len(small)+1):
    # add inner list for one row
    summs.append([])
    for j in range(len(big[0])-len(small[0])+1):
        s = 0
        for row in range(len(small)):
            for col in range(len(small[0])):
                s += abs(big[k+row][j+col]-small[row][col])
        # add to the inner list
        summs[-1].append(s)

print(summs)

输出:

[[28, 29, 38], [24, 31, 39]]

如果您只对较大的坐标感兴趣,请存储 (rowoffset,coloffset,sum) 的元组并且不要将列表装箱到列表中。你可以用 min() 这样的键:

summs = []
for k in range(len(big)-len(small)+1):
    for j in range(len(big[0])-len(small[0])+1):
        s = 0
        for row in range(len(small)):
            for col in range(len(small[0])):
                s += abs(big[k+row][j+col]-small[row][col])
        summs .append( (k,j,s) )  # row,col, sum

print ("Min value for bigger matrix at ", min(summs , key=lambda x:x[2]) )

输出:

Min value for bigger matrix at  (1, 0, 24)

如果你有 "draws" 这只会 return 具有最小行、col 偏移量的那个。

另一种可能的解决方案是,返回最小差值和 big 矩阵中的坐标:

small=[[1,2,3],
       [4,5,6],
       [7,8,9]]

big=[[2,4,2,3,5],
     [6,0,1,9,0],
     [2,8,2,1,0],
     [7,7,4,2,1]]

def difference(small, matrix):
    l = len(small)
    return sum([abs(small[i][j] - matrix[i][j]) for i in range(l) for j in range(l)])

def getSubmatrices(big, smallLength):
    submatrices = []
    bigLength = len(big)
    step = (bigLength // smallLength) + 1
    for i in range(smallLength):
        for j in range(step):
            tempMatrix = [big[j+k][i:i+smallLength] for k in range(smallLength)]
            submatrices.append([i+1,j+1,tempMatrix])
    return submatrices

def minDiff(small, big):
    submatrices = getSubmatrices(big, len(small))
    diffs = [(x,y, difference(small, submatrix)) for x, y, submatrix in submatrices]
    minDiff = min(diffs, key=lambda elem: elem[2])
    return minDiff

y, x, diff = minDiff(small, big)

print("Minimum difference: ", diff)
print("X = ", x)
print("Y = ", y)

输出:

Minimum difference:  24
X =  1
Y =  2

您可以遍历可行的行和列,并将 big 的切片压缩为 small 以计算差异之和,并使用 min 找到最小值差异:

from itertools import islice
min(
    (
        sum(
            sum(abs(x - y) for x, y in zip(a, b))
            for a, b in zip(
                (
                    islice(r, col, col + len(small[0]))
                    for r in islice(big, row, row + len(small))
                ),
                small
            )
        ),
        (row, col)
    )
    for row in range(len(big) - len(small) + 1)
    for col in range(len(big[0]) - len(small[0]) + 1)
)

或一行:

min((sum(sum(abs(x - y) for x, y in zip(a, b)) for a, b in zip((islice(r, col, col + len(small[0])) for r in islice(big, row, row + len(small))), small)), (row, col)) for row in range(len(big) - len(small) + 1) for col in range(len(big[0]) - len(small[0]) + 1))

这个returns:(24, (1, 0))

我会使用 numpy 来帮助解决这个问题。

首先,我会将数组转换为 numpy 数组

import numpy as np

small = np.array([[1,2,3], [4,5,6], [7,8,9]])
big = np.array([[2,4,2,3,5], [6,0,1,9,0], [2,8,2,1,0], [7,7,4,2,1]])

然后我会初始化一个数组来存储测试结果(可选:还有一个字典)

result_shape = np.array(big.shape) - np.array(small.shape) + 1
results = np.zeros((result_shape[0], result_shape[1]))
result_dict = {}

然后遍历小矩阵在大矩阵上可以定位的位置,计算差值:

insert = np.zeros(big.shape)
for i in range(results.shape[0]):
    for j in range(results.shape):
        insert[i:small.shape[0] + i, j:small.shape[1] + j] = small
        results[i, j] = np.sum(np.abs(big - insert)[i:3+i, j:3+j])
        # Optional dictionary 
        result_dict['{}{}'.format(i, j)] = np.sum(np.abs(big - insert)[i:3+i, j:3+j])

那么你可以print(results)获得:

[[ 28.  29.  38.]
 [ 24.  31.  39.]]

and/or因为字典的key中保存了小矩阵在大矩阵上的位置,可以通过key得到小矩阵在大矩阵上的位置差值最小的地方操纵:

pos_min = [int(i) for i in list(min(result_dict, key=result_dict.get))]

如果你 print(pos_min),你将获得:

[1, 0]

然后,如果您需要任何内容​​的索引,您可以根据需要对其进行迭代。希望这对您有所帮助!