分割数据集

Segmenting a dataset

给定一个包含日期和值的 CSV 数据集,我想尝试创建一个新的 CSV 数据集,其中输出由图形已更改的点组成:在 all.There 处增加、减少或未更改是来自数据的以下示例,以及所需的输出。 (CSV 下降到 1999 年)

Date        Value
07/04/2014  137209.0
04/04/2014  137639.0
03/04/2014  137876.0
02/04/2014  137795.0
01/04/2014  137623.0
31/03/2014  137589.0
28/03/2014  137826.0
27/03/2014  138114.0
26/03/2014  138129.0
25/03/2014  137945.0

输出应该是:

StartDate   EndDate   StartValue   EndValue
03/04/2014  07/04/2014  137876      137209
31/03/2014  03/04/2014  137589      137876
27/03/2014  31/03/2014  138114      137589
26/03/2014  27/03/2014  138129      138114
25/03/2014  26/03/2014  137945      138129

我尝试解决这个问题,涉及一个自写的 Stretch class,它在添加数据时管理数据的拆分:

from enum import Enum

class Direction(Enum):
    NA = None 
    Up = 1 
    Stagnant = 0 
    Down = -1

    @staticmethod
    def getDir(a,b):
        """Gets two numbers and returns a Direction result by comparing them."""
        if a < b:   return Direction.Up
        elif a > b: return Direction.Down
        else:       return Direction.Stagnant

class Stretch:
    """Accepts tuples of (insignificant, float). Adds tuples to internal data struct
    while they have the same trend (down, up, stagnant). See add() for details."""

    def __init__(self,dp=None):
        self.data = []
        if dp:
            self.data.append(dp)
        self.dir = Direction.NA  


    def add(self,dp):
        """Adds dp to self if it follows a given trend (or it holds less then 2 datapts).
        Returns (True,None) if the datapoint was added to this Stretch instance,
        returns (False, new_stretch) if it broke the trend. The new_stretch
        contains the new last value of the self.data as well as the new dp."""
        if not self.data:
            self.data.append(dp)
            return True, None
        if len(self.data) == 1:
            self.dir = Direction.getDir(self.data[-1][1],dp[1]) 
            self.data.append(dp)
            return True, None
        if Direction.getDir(self.data[-1][1],dp[1]) == self.dir:
            self.data.append(dp)
            return True, None
        else:
            k = Stretch(self.data[-1])
            k.add(dp)
            return False, k

演示文件:

with open("d.txt","w") as w:
    w.write( """Date        Value
07/04/2014  137209.0
04/04/2014  137639.0
03/04/2014  137876.0
02/04/2014  137795.0
01/04/2014  137623.0
31/03/2014  137589.0
28/03/2014  137826.0
27/03/2014  138114.0
26/03/2014  138129.0
25/03/2014  137945.0
""" )

用法:

data_stretches = []

with open("d.txt") as r:
    S = Stretch()
    for line in r:
        try:
            date,value = line.strip().split()
            value = float(value)
        except (IndexError, ValueError) as e:
            print("Illegal line: '{}'".format(line))
            continue

        b, newstretch = S.add( (date,value) )
        if not b:
            data_stretches.append(S)
            S = newstretch
data_stretches.append(S)

for s in data_stretches:
    data = s.data
    direc = s.dir


    print(data[0][0], data[-1][0], data[0][1],data[-1][-1], s.dir)

输出:

# EndDate  StartDate  EndV     StartV   (reversed b/c I inverted dates)  
07/04/2014 03/04/2014 137209.0 137876.0 Direction.Up
03/04/2014 31/03/2014 137876.0 137589.0 Direction.Down
31/03/2014 26/03/2014 137589.0 138129.0 Direction.Up
26/03/2014 25/03/2014 138129.0 137945.0 Direction.Down 

除了根据 "from when to when" 评估数据的方向混乱之外,我的输出与你的不同......因为你将一个统一序列分成两部分 w/o 显而易见的原因:

27/03/2014  31/03/2014  138114      137589   # further down
26/03/2014  27/03/2014  138129      138114   # down

您可以使用 numpy 中的 sign 并将其应用到列 'Value' 上的 diff 以查看图形趋势变化的位置,然后创建一个每组趋势的增量值 shiftcumsum:

ser_sign = np.sign(df.Value.diff(-1).ffill())
ser_gr = ser_gr =(ser_sign.shift() != ser_sign).cumsum()

现在您知道了组,要获取每个组的开始和结束,您可以在 ser_grjoinlast 上使用 groupby (在 shift 之后 ser_gr 中的值作为每组的最后一个是下一组的第一个)和 first.

df_new = (df.groupby(ser_gr.shift().bfill(),as_index=False).last()
            .join(df.groupby(ser_gr,as_index=False).first(),lsuffix='_start',rsuffix='_end'))

print (df_new)
   Date_start  Value_start    Date_end  Value_end
0  03/04/2014     137876.0  07/04/2014   137209.0
1  31/03/2014     137589.0  03/04/2014   137876.0
2  26/03/2014     138129.0  31/03/2014   137589.0
3  25/03/2014     137945.0  26/03/2014   138129.0

现在,如果您需要对列重新排序并重命名,您可以使用:

df_new.columns = ['StartDate', 'StartValue', 'EndDate', 'EndValue']
df_new = df_new[['StartDate','EndDate','StartValue','EndValue']]

print (df_new)
    StartDate     EndDate  StartValue  EndValue
0  03/04/2014  07/04/2014    137876.0  137209.0
1  31/03/2014  03/04/2014    137589.0  137876.0
2  26/03/2014  31/03/2014    138129.0  137589.0
3  25/03/2014  26/03/2014    137945.0  138129.0

这两个操作可以同时完成,而不是使用 rename 创建 df_new