对数组执行二重积分
Perform a double integral over array
我按照 and here. As stated in those answers, I can not use scipy.integrate.quad
所述对数组执行一维积分以向量化数组上的积分,因为它采用 自适应 算法,这就是为什么我在下面使用 numpy.trapz
(我也可以使用 scipy.integrate.simps
或 scipy.integrate.romb
)
import numpy as np
# Define some random data
Ndata = 500
data1 = np.random.uniform(.1, .8, Ndata)
data2 = np.random.uniform(.01, .2, Ndata)
# 1D function to integrate
def distFunc(x, c1=1., c2=.1):
B1 = ((data1 - (1. / x)) / data2)**2
B2 = ((x - c1) / c2)**2
f = np.exp(-.5 * B1) * np.exp(-.5 * B2) / c2
return f
# Values in x to evaluate the integral.
x = np.linspace(.1, 10, 100).reshape(-1, 1)
# Integral in x for each of the Ndata values defined above.
int_exp = np.trapz(distFunc(x), x, axis=0)
这适用于单维,但现在我想执行二重积分,用变量替换 c2
常量:
# 2D function to integrate
def distFunc(x, y, c1=1.):
B1 = ((data1 - (1. / x)) / data2)**2
B2 = ((x - c1) / y)**2
f = np.exp(-.5 * B1) * np.exp(-.5 * B2) / y
return f
据我所知,唯一可用的函数是 scipy.integrate.dblquad
bu 这意味着我不能再一次将积分应用于整个数组,我将不得不使用 for
循环相当慢。
有什么解决办法吗?只要性能合理,我几乎对任何事情都持开放态度(我将这个二重积分插入到 MCMC 中,它需要被评估数百万次)
添加
这是我在 for
循环中使用 scipy.integrate.quad
进行一维积分的尝试(即:一次数组中的一个数据值)。该过程比在整个数组上使用 np.trapz
慢 50 倍以上。
import numpy as np
from scipy.integrate import quad
# Define some random data
Ndata = 500
data1 = np.random.uniform(.1, .8, Ndata)
data2 = np.random.uniform(.01, .2, Ndata)
# Function to integrate
def distFunc2(x, data1_i, data2_i, c1=1., c2=.1):
B1 = ((data1_i - (1. / x)) / data2_i)**2
B2 = ((x - c1) / c2)**2
f = np.exp(-.5 * B1) * np.exp(-.5 * B2) / c2
return f
s = t.time()
int_exp = np.zeros(Ndata)
for i in range(Ndata):
int_exp[i] = quad(distFunc2, .1, 10., args=(data1[i], data2[i]))[0]
print(t.time() - s)
添加 2
测试下面给出的答案,它 有点工作 ,但需要注意的是,与 dblquad
相比,它有时会非常严重地失败(这要慢得多但更精确)。我猜这与 np.trapz
.
使用的算法有关
# Define some random data
Ndata = 10
data1 = np.random.uniform(.1, 10., Ndata)
data2 = np.random.uniform(.1, .2, Ndata)
c1 = .1
print(integ_dblquad(c1, data1, data2))
print(integ_trapz(c1, data1, data2))
def integ_dblquad(c1, data1, data2):
def distFunc(y, x, d1_i, d2_i, c1):
B1 = ((d1_i - (1. / x)) / d2_i)**2
B2 = ((x - c1) / y)**2
return (np.exp(-.5 * B1) / d2_i) * np.exp(-.5 * B2) / y
int_exp = np.zeros(data1.size)
for i in range(data1.size):
int_exp[i] = dblquad(
distFunc, .1, 10., lambda x: 0, lambda x: 5.,
args=(data1[i], data2[i], c1))[0]
return np.sum(np.log(int_exp))
def integ_trapz(c1, data1, data2):
def distFunc2d(x, y):
B1 = ((data1 - (1. / x)) / data2)**2
B2 = ((x - c1) / y)**2
return (np.exp(-.5 * B1) / data2) * np.exp(-.5 * B2) / y
# Values in x to evaluate the integral.
x = np.linspace(.1, 10, 1000)
y = np.linspace(.1, 5., 1000)
# Integral in x for each of the Ndata values defined above.
int_exp2d = np.trapz(np.trapz(distFunc2d(x[:, np.newaxis], y[:, np.newaxis, np.newaxis]), y, axis=0), x, axis=0)
return np.sum(np.log(int_exp2d))
如果我没有正确理解你的问题,你可以调用 trapz
两次:
import numpy as np
# Define some random data
Ndata = 500
data1 = np.random.uniform(.1, .8, Ndata)
data2 = np.random.uniform(.01, .2, Ndata)
# 1D function to integrate
def distFunc(x, c1=1., c2=.1):
B1 = ((data1 - (1. / x)) / data2)**2
B2 = ((x - c1) / c2)**2
f = np.exp(-.5 * B1) * np.exp(-.5 * B2) / c2
return f
def distFunc2d(x, y, c1=1.):
B1 = ((data1 - (1. / x)) / data2)**2
B2 = ((x - c1) / y)**2
f = np.exp(-.5 * B1) * np.exp(-.5 * B2) / y
return f
# Values in x to evaluate the integral.
x = np.linspace(.1, 10, 100)
y = np.linspace(.1, 10, 100)
# Integral in x for each of the Ndata values defined above.
int_exp = np.trapz(distFunc(x[:,np.newaxis]), x, axis=0)
int_exp2d = np.trapz(np.trapz(distFunc2d(x[:,np.newaxis],y[:,np.newaxis,np.newaxis]), y, axis=0), x, axis=0)
我按照 scipy.integrate.quad
所述对数组执行一维积分以向量化数组上的积分,因为它采用 自适应 算法,这就是为什么我在下面使用 numpy.trapz
(我也可以使用 scipy.integrate.simps
或 scipy.integrate.romb
)
import numpy as np
# Define some random data
Ndata = 500
data1 = np.random.uniform(.1, .8, Ndata)
data2 = np.random.uniform(.01, .2, Ndata)
# 1D function to integrate
def distFunc(x, c1=1., c2=.1):
B1 = ((data1 - (1. / x)) / data2)**2
B2 = ((x - c1) / c2)**2
f = np.exp(-.5 * B1) * np.exp(-.5 * B2) / c2
return f
# Values in x to evaluate the integral.
x = np.linspace(.1, 10, 100).reshape(-1, 1)
# Integral in x for each of the Ndata values defined above.
int_exp = np.trapz(distFunc(x), x, axis=0)
这适用于单维,但现在我想执行二重积分,用变量替换 c2
常量:
# 2D function to integrate
def distFunc(x, y, c1=1.):
B1 = ((data1 - (1. / x)) / data2)**2
B2 = ((x - c1) / y)**2
f = np.exp(-.5 * B1) * np.exp(-.5 * B2) / y
return f
据我所知,唯一可用的函数是 scipy.integrate.dblquad
bu 这意味着我不能再一次将积分应用于整个数组,我将不得不使用 for
循环相当慢。
有什么解决办法吗?只要性能合理,我几乎对任何事情都持开放态度(我将这个二重积分插入到 MCMC 中,它需要被评估数百万次)
添加
这是我在 for
循环中使用 scipy.integrate.quad
进行一维积分的尝试(即:一次数组中的一个数据值)。该过程比在整个数组上使用 np.trapz
慢 50 倍以上。
import numpy as np
from scipy.integrate import quad
# Define some random data
Ndata = 500
data1 = np.random.uniform(.1, .8, Ndata)
data2 = np.random.uniform(.01, .2, Ndata)
# Function to integrate
def distFunc2(x, data1_i, data2_i, c1=1., c2=.1):
B1 = ((data1_i - (1. / x)) / data2_i)**2
B2 = ((x - c1) / c2)**2
f = np.exp(-.5 * B1) * np.exp(-.5 * B2) / c2
return f
s = t.time()
int_exp = np.zeros(Ndata)
for i in range(Ndata):
int_exp[i] = quad(distFunc2, .1, 10., args=(data1[i], data2[i]))[0]
print(t.time() - s)
添加 2
测试下面给出的答案,它 有点工作 ,但需要注意的是,与 dblquad
相比,它有时会非常严重地失败(这要慢得多但更精确)。我猜这与 np.trapz
.
# Define some random data
Ndata = 10
data1 = np.random.uniform(.1, 10., Ndata)
data2 = np.random.uniform(.1, .2, Ndata)
c1 = .1
print(integ_dblquad(c1, data1, data2))
print(integ_trapz(c1, data1, data2))
def integ_dblquad(c1, data1, data2):
def distFunc(y, x, d1_i, d2_i, c1):
B1 = ((d1_i - (1. / x)) / d2_i)**2
B2 = ((x - c1) / y)**2
return (np.exp(-.5 * B1) / d2_i) * np.exp(-.5 * B2) / y
int_exp = np.zeros(data1.size)
for i in range(data1.size):
int_exp[i] = dblquad(
distFunc, .1, 10., lambda x: 0, lambda x: 5.,
args=(data1[i], data2[i], c1))[0]
return np.sum(np.log(int_exp))
def integ_trapz(c1, data1, data2):
def distFunc2d(x, y):
B1 = ((data1 - (1. / x)) / data2)**2
B2 = ((x - c1) / y)**2
return (np.exp(-.5 * B1) / data2) * np.exp(-.5 * B2) / y
# Values in x to evaluate the integral.
x = np.linspace(.1, 10, 1000)
y = np.linspace(.1, 5., 1000)
# Integral in x for each of the Ndata values defined above.
int_exp2d = np.trapz(np.trapz(distFunc2d(x[:, np.newaxis], y[:, np.newaxis, np.newaxis]), y, axis=0), x, axis=0)
return np.sum(np.log(int_exp2d))
如果我没有正确理解你的问题,你可以调用 trapz
两次:
import numpy as np
# Define some random data
Ndata = 500
data1 = np.random.uniform(.1, .8, Ndata)
data2 = np.random.uniform(.01, .2, Ndata)
# 1D function to integrate
def distFunc(x, c1=1., c2=.1):
B1 = ((data1 - (1. / x)) / data2)**2
B2 = ((x - c1) / c2)**2
f = np.exp(-.5 * B1) * np.exp(-.5 * B2) / c2
return f
def distFunc2d(x, y, c1=1.):
B1 = ((data1 - (1. / x)) / data2)**2
B2 = ((x - c1) / y)**2
f = np.exp(-.5 * B1) * np.exp(-.5 * B2) / y
return f
# Values in x to evaluate the integral.
x = np.linspace(.1, 10, 100)
y = np.linspace(.1, 10, 100)
# Integral in x for each of the Ndata values defined above.
int_exp = np.trapz(distFunc(x[:,np.newaxis]), x, axis=0)
int_exp2d = np.trapz(np.trapz(distFunc2d(x[:,np.newaxis],y[:,np.newaxis,np.newaxis]), y, axis=0), x, axis=0)