STM32 TIM+GPIO意外相移(HAL库)

STM32 TIM+GPIO unexpected phase shift (HAL library)

我用的是STM32F405RGT6。 要在 MCU 和传感器之间交换数据,我需要 2 根线:时钟线和与我的时钟同步的信号。 在具有更新中断的输出比较 (OC) 模式下使用定时器似乎是最合适的解决方案。但是有一点我不明白。

我已经将TIM3配置为OC模式,PB8管脚在周期中间切换。 计时器会在每次更新时造成中断。此中断的处理程序切换另一个引脚 (PB4)。 所以我希望在我的电线上有相同的信号,在半个周期内具有相移。当 TIM3 周期需要 240ms 时没问题,但我在更短的周期有明显的延迟,直到同步在周期 1μs 时完全失败。 TIM3 使用 84MHz APB1 源。预分频器:/1.

main.c code:

/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "stm32f4xx_hal.h"

/* USER CODE BEGIN Includes */

/* USER CODE END Includes */

/* Private variables ---------------------------------------------------------*/
RTC_HandleTypeDef hrtc;

TIM_HandleTypeDef htim4;

/* USER CODE BEGIN PV */
/* Private variables ---------------------------------------------------------*/

/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
void Error_Handler(void);
static void MX_GPIO_Init(void);
static void MX_TIM4_Init(void);
static void MX_RTC_Init(void);

void HAL_TIM_MspPostInit(TIM_HandleTypeDef *htim);


/* USER CODE BEGIN PFP */
/* Private function prototypes -----------------------------------------------*/

/* USER CODE END PFP */

/* USER CODE BEGIN 0 */

/* USER CODE END 0 */

int main(void)
{

  /* USER CODE BEGIN 1 */

  /* USER CODE END 1 */

  /* MCU Configuration----------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* Configure the system clock */
  SystemClock_Config();

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_TIM4_Init();
  MX_RTC_Init();

  /* USER CODE BEGIN 2 */

    __HAL_TIM_ENABLE_IT(&htim4, TIM_IT_UPDATE);
    HAL_TIM_OC_Start(&htim4, TIM_CHANNEL_3);

  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
  /* USER CODE END WHILE */

  /* USER CODE BEGIN 3 */

  }
  /* USER CODE END 3 */

}

/** System Clock Configuration
*/
void SystemClock_Config(void)
{

  RCC_OscInitTypeDef RCC_OscInitStruct;
  RCC_ClkInitTypeDef RCC_ClkInitStruct;
  RCC_PeriphCLKInitTypeDef PeriphClkInitStruct;

    /**Configure the main internal regulator output voltage 
    */
  __HAL_RCC_PWR_CLK_ENABLE();

  __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);

    /**Initializes the CPU, AHB and APB busses clocks 
    */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_LSI|RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  RCC_OscInitStruct.LSIState = RCC_LSI_ON;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  RCC_OscInitStruct.PLL.PLLM = 16;
  RCC_OscInitStruct.PLL.PLLN = 224;
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
  RCC_OscInitStruct.PLL.PLLQ = 4;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }

    /**Initializes the CPU, AHB and APB busses clocks 
    */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK)
  {
    Error_Handler();
  }

  PeriphClkInitStruct.PeriphClockSelection = RCC_PERIPHCLK_RTC;
  PeriphClkInitStruct.RTCClockSelection = RCC_RTCCLKSOURCE_LSI;
  if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct) != HAL_OK)
  {
    Error_Handler();
  }

    /**Configure the Systick interrupt time 
    */
  HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq()/1000);

    /**Configure the Systick 
    */
  HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK);

  /* SysTick_IRQn interrupt configuration */
  HAL_NVIC_SetPriority(SysTick_IRQn, 0, 0);
}

/* RTC init function */
static void MX_RTC_Init(void)
{

    /**Initialize RTC Only 
    */
  hrtc.Instance = RTC;
  hrtc.Init.HourFormat = RTC_HOURFORMAT_24;
  hrtc.Init.AsynchPrediv = 127;
  hrtc.Init.SynchPrediv = 255;
  hrtc.Init.OutPut = RTC_OUTPUT_DISABLE;
  hrtc.Init.OutPutPolarity = RTC_OUTPUT_POLARITY_HIGH;
  hrtc.Init.OutPutType = RTC_OUTPUT_TYPE_OPENDRAIN;
  if (HAL_RTC_Init(&hrtc) != HAL_OK)
  {
    Error_Handler();
  }

}

/* TIM4 init function */
static void MX_TIM4_Init(void)
{

  TIM_MasterConfigTypeDef sMasterConfig;
  TIM_OC_InitTypeDef sConfigOC;

  htim4.Instance = TIM4;
  htim4.Init.Prescaler = 0;
  htim4.Init.CounterMode = TIM_COUNTERMODE_UP;
  htim4.Init.Period = 99;
  htim4.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  if (HAL_TIM_OC_Init(&htim4) != HAL_OK)
  {
    Error_Handler();
  }

  sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
  sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  if (HAL_TIMEx_MasterConfigSynchronization(&htim4, &sMasterConfig) != HAL_OK)
  {
    Error_Handler();
  }

  sConfigOC.OCMode = TIM_OCMODE_TOGGLE;
  sConfigOC.Pulse = 49;
  sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
  sConfigOC.OCFastMode = TIM_OCFAST_ENABLE;
  if (HAL_TIM_OC_ConfigChannel(&htim4, &sConfigOC, TIM_CHANNEL_3) != HAL_OK)
  {
    Error_Handler();
  }

  HAL_TIM_MspPostInit(&htim4);

}

/** Configure pins as 
        * Analog 
        * Input 
        * Output
        * EVENT_OUT
        * EXTI
*/
static void MX_GPIO_Init(void)
{

  GPIO_InitTypeDef GPIO_InitStruct;

  /* GPIO Ports Clock Enable */
  __HAL_RCC_GPIOH_CLK_ENABLE();
  __HAL_RCC_GPIOB_CLK_ENABLE();

  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(GPIOB, GPIO_PIN_4, GPIO_PIN_RESET);

  /*Configure GPIO pin : PB4 */
  GPIO_InitStruct.Pin = GPIO_PIN_4;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
  HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);

}

/* USER CODE BEGIN 4 */

/* USER CODE END 4 */

/**
  * @brief  Period elapsed callback in non blocking mode
  * @note   This function is called  when TIM1 interrupt took place, inside
  * HAL_TIM_IRQHandler(). It makes a direct call to HAL_IncTick() to increment
  * a global variable "uwTick" used as application time base.
  * @param  htim : TIM handle
  * @retval None
  */
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
{
/* USER CODE BEGIN Callback 0 */

/* USER CODE END Callback 0 */
  if (htim->Instance == TIM1) {
    HAL_IncTick();
  }
/* USER CODE BEGIN Callback 1 */

  else if (htim->Instance == TIM4)
  {
      HAL_GPIO_TogglePin(GPIOB, GPIO_PIN_4);
  }

/* USER CODE END Callback 1 */
}

/**
  * @brief  This function is executed in case of error occurrence.
  * @param  None
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler */
  /* User can add his own implementation to report the HAL error return state */
  while(1) 
  {
  }
  /* USER CODE END Error_Handler */ 
}

#ifdef USE_FULL_ASSERT

/**
   * @brief Reports the name of the source file and the source line number
   * where the assert_param error has occurred.
   * @param file: pointer to the source file name
   * @param line: assert_param error line source number
   * @retval None
   */
void assert_failed(uint8_t* file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
    ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */

}

#endif

这是我的时钟配置。 clock_conf TIM3使用84MHz APB1总线,所以它的最小周期小于50ns。

不同周期的波形图(1个计数代表12ns,黄色为PB4信号,蓝色为PB8-OC):1 20000 counts 2 2000 counts 3 1500 counts 4 1000 counts 5 400 counts 6 200 counts 7 100 counts

为什么我不能以这样的速率达到正确的同步? MCU、定时器和GPIO以足够的频率工作。

对不起我的英语,这不是我的母语。

这是 HAL 库的开销。

切换定时器中断中的引脚需要 2 行代码

/*
 * EDIT
 *
 * Resetting the status register in the very last statement of an interrupt
 * handler might not reach the interrupt controller in time, and the handler
 * would be invoked once again. Swapping the two lines would solve it.
 *
 * wrong order:
 *
 * void TIM4_IRQHandler() {
 *     GPIOB->ODR |= (1 << 4);
 *     TIM4->SR = 0;
 * }
 *
 * right order:
 */

void TIM4_IRQHandler() {
    TIM4->SR = 0;
    GPIOB->ODR |= (1 << 4);
}

现在看看调用 HAL 的中断处理程序在做什么。

  • 加载句柄,并将其传递给 HAL_TIM_IRQHandler()
  • HAL_TIM_IRQHandler() 从句柄指向的结构中检索 UART 基地址。
  • 加载定时器状态寄存器以检查是否有通道 1 capture/compare 事件。没有。
  • 重新加载定时器状态寄存器以检查是否有通道 2 capture/compare 事件。没有。
  • 重新加载定时器状态寄存器以检查是否有通道 3 capture/compare 事件。有一个,因为通道处于输出比较模式
  • 重新加载定时器状态寄存器以检查通道 3 capture/compare 中断是否启用。不是。
  • 重新加载定时器状态寄存器以检查是否有通道 4 capture/compare 事件。没有。
  • 重新加载定时器状态寄存器以检查是否有更新事件。是的,有。
  • 重新加载定时器状态寄存器以检查更新中断是否被启用。是的。
  • 清除 SR
  • 调用回调函数。
  • 回调从句柄指向的结构中加载 UART 基地址。
  • 检查中断是否来自TIM1。不是。
  • 检查中断是否来自TIM4。是的。
  • 最后它调用一个函数来切换引脚。
  • 然后它 returns 到 HAL 处理程序,它检查另外 3 个事件,这在 TIM4 上什至不可能,每次检查都重新加载状态寄存器。

MCU 在设计时考虑了高效的中断处理,但使用 HAL 否定了这一优势,以及程序员对实际使用功能的了解。 MCU 有一个专用于每个外设的中断向量,但是 HAL 有一个适用于所有定时器的通用处理程序,它通过双重间接访问外设(指向一个结构的指针,该结构具有指向寄存器的指针,不能 const), 使得编译器不可能优化遍历指针。你知道只有更新中断被启用,但是HAL检查了所有8个可能的事件。