根据最小阈值或置信区间,计算与另一组相比,给定组中有多少样本得到了改进?
Compute how many samples have been improved, according to a minimum threshold or confidence interval, in a given set in comparison to another set?
我有以下数据框:
ID VAL1 VAL2
Q2241 0.3333 0.3353
Q2242 0.5 0.5
Q2243 0.3333 0.3333
Q2244 0.2137 0.4792
Q2245 0.1429 0.2
Q2246 0.5 0.5
Q2247 0.4167 0.6667
Q2248 1 1
Q2249 0.125 0.0909
Q2250 0.2 0.2
Q2251 0.325 0.2667
Q2252 0.1667 0.2
Q2253 0.3333 0.25
Q2254 0.45 0.8333
Q2255 0.3333 0.5
Q2256 1 1
Q2257 0.5 0.51
Q2258 0.3929 0.3333
Q2259 0.3611 0.625
有没有一种方法可以正确计算给定数据帧中 VAL2
比 VAL1
显着 higher/lower 的样本数 (ID
)。
我正在寻找类似 t-test 的内容,其中度量给出的结果类似于以下示例:
Win Tie Loss
64 36 137
其中:
Win: number of IDs where VAL2 is higher than VAL1 with some confidence interval
Tie: number of IDs where VAL2 ~ VAL1 (no significant difference, 0.0001 for example)
Loss: number of IDs where VAL2 is lower than VAL1 with some confidence interval
tol = 0.0001
win = (df.VAL2 > (df.VAL1 + tol)).sum()
loss = (df.VAL2 < (df.VAL1 - tol)).sum()
tie = ((df.VAL1 - df.VAL2).abs() <= tol).sum()
df = pd.DataFrame([{'Win': win, 'Tie':tie, 'Loss': loss}])
print (df)
# Loss Tie Win
# 0 4 6 9
我有以下数据框:
ID VAL1 VAL2
Q2241 0.3333 0.3353
Q2242 0.5 0.5
Q2243 0.3333 0.3333
Q2244 0.2137 0.4792
Q2245 0.1429 0.2
Q2246 0.5 0.5
Q2247 0.4167 0.6667
Q2248 1 1
Q2249 0.125 0.0909
Q2250 0.2 0.2
Q2251 0.325 0.2667
Q2252 0.1667 0.2
Q2253 0.3333 0.25
Q2254 0.45 0.8333
Q2255 0.3333 0.5
Q2256 1 1
Q2257 0.5 0.51
Q2258 0.3929 0.3333
Q2259 0.3611 0.625
有没有一种方法可以正确计算给定数据帧中 VAL2
比 VAL1
显着 higher/lower 的样本数 (ID
)。
我正在寻找类似 t-test 的内容,其中度量给出的结果类似于以下示例:
Win Tie Loss
64 36 137
其中:
Win: number of IDs where VAL2 is higher than VAL1 with some confidence interval Tie: number of IDs where VAL2 ~ VAL1 (no significant difference, 0.0001 for example) Loss: number of IDs where VAL2 is lower than VAL1 with some confidence interval
tol = 0.0001
win = (df.VAL2 > (df.VAL1 + tol)).sum()
loss = (df.VAL2 < (df.VAL1 - tol)).sum()
tie = ((df.VAL1 - df.VAL2).abs() <= tol).sum()
df = pd.DataFrame([{'Win': win, 'Tie':tie, 'Loss': loss}])
print (df)
# Loss Tie Win
# 0 4 6 9