如何将最佳拟合线应用于 python 中的时间序列

How to apply best fit line to time series in python

我正在尝试将最佳拟合线应用于显示 NDVI 随时间变化的时间序列,但我一直 运行 出错。在这种情况下,我的 x 是不同的日期,作为不均匀间隔的字符串,y 是每个日期使用的 NDVI 值。 当我在 numpy 中使用 poly1d 函数时,出现以下错误:

TypeError: ufunc 'add' did not contain a loop with signature matching types 
   dtype('<U32') dtype('<U32') dtype('<U32')

我附上了我正在使用的数据集的样本

# plot Data and and models
plt.subplots(figsize=(20, 10))
plt.xticks(rotation=90)
plt.plot(x,y,'-', color= 'blue')
plt.title('WSC-10-50')
plt.ylabel('NDVI')
plt.xlabel('Date')
plt.plot(np.unique(x), np.poly1d(np.polyfit(x, y, 1))(np.unique(y)))
plt.legend(loc='upper right')

任何帮助修复我的代码或更好的方法来获得最适合我的数据的线?

当我将最佳拟合线应用于时间序列数据时,我创建了一条代表日期的均匀间隔线以简化回归。所以我使用 np.linspace() 创建一组等于日期数的间隔。

代码:

from io import StringIO
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

data = StringIO("""

date   value
24-Jan-16   0.786
25-Feb-16   0.781
29-Apr-16   0.786
15-May-16   0.761
16-Jun-16   0.762
04-Sep-16   0.783
22-Oct-16   0.797

""")

df = pd.read_table(data, delim_whitespace=True)

# To read from csv use:
# df = pd.read_csv("/path/to/file.csv")

df.loc[:, "date"] = pd.to_datetime(df.loc[:, "date"], format="%d-%b-%y")

y_values = df.loc[:, "value"]
x_values = np.linspace(0,1,len(df.loc[:, "value"]))
poly_degree = 3

coeffs = np.polyfit(x_values, y_values, poly_degree)
poly_eqn = np.poly1d(coeffs)
y_hat = poly_eqn(x_values)

plt.figure(figsize=(12,8))
plt.plot(df.loc[:, "date"], df.loc[:,"value"], "ro")
plt.plot(df.loc[:, "date"],y_hat)
plt.title('WSC-10-50')
plt.ylabel('NDVI')
plt.xlabel('Date')
plt.savefig("NDVI_plot.png")

输出: