提高重复查询的查询效率

Improve query efficiency for repetitive queries

我正在编写一个 node.js 应用程序来启用对 PostgreSQL 数据库的搜索。为了在搜索框中启用 twitter 预先输入,我必须从数据库中 c运行ch 一组关键字以在页面加载之前初始化 Bloodhound。如下所示:

SELECT distinct handlerid from lotintro where char_length(lotid)=7;

所以对于大 table (lotintro),这是昂贵的;这也很愚蠢,因为查询结果很可能在一段时间内对于不同的网络访问者保持不变。

处理这个问题的正确方法是什么?我在考虑几个选项:

1) 将查询放入存储过程并从 node.js:

中调用它
   SELECT * from getallhandlerid()

这是否意味着查询将被编译并且数据库将自动 return 相同的结果集而无需实际 运行ning 查询知道结果不会改变?

2) 或者,创建一个单独的 table 来存储不同的 handlerid 并使用每天 运行s 的触发器更新 table? (我知道理想情况下,触发器应该 运行 每个 insert/update 到 table,但这成本太高了)。

3) 按照建议创建部分索引。这是收集的内容:

查询

SELECT distinct handlerid from lotintro where length(lotid) = 7;

索引

CREATE INDEX lotid7_idx ON lotintro (handlerid)
WHERE  length(lotid) = 7;

有索引,查询耗时250ms左右,试试运行

explain (analyze on, TIMING OFF) SELECT distinct handlerid from lotintro where length(lotid) = 7

"HashAggregate  (cost=5542.64..5542.65 rows=1 width=6) (actual rows=151 loops=1)"
"  ->  Bitmap Heap Scan on lotintro  (cost=39.08..5537.50 rows=2056 width=6) (actual rows=298350 loops=1)"
"        Recheck Cond: (length(lotid) = 7)"
"        Rows Removed by Index Recheck: 55285"
"        ->  Bitmap Index Scan on lotid7_idx  (cost=0.00..38.57 rows=2056 width=0) (actual rows=298350 loops=1)"
"Total runtime: 243.686 ms"

没有索引,查询耗时210ms左右,试试运行

explain (analyze on, TIMING OFF) SELECT distinct handlerid from lotintro where length(lotid) = 7

"HashAggregate  (cost=19490.11..19490.12 rows=1 width=6) (actual rows=151 loops=1)"
"  ->  Seq Scan on lotintro  (cost=0.00..19484.97 rows=2056 width=6) (actual rows=298350 loops=1)"
"        Filter: (length(lotid) = 7)"
"        Rows Removed by Filter: 112915"
"Total runtime: 214.235 ms"

我做错了什么?

4) 使用 alexius 建议的索引和查询:

create index on lotintro using btree(char_length(lotid), handlerid);

但这不是最佳解决方案。因为只有几个不同的值,你可以使用称为松散索引扫描的技巧,在你的情况下它应该工作得更快:

explain (analyze on, BUFFERS on, TIMING OFF)
WITH RECURSIVE t AS (
   (SELECT handlerid FROM lotintro WHERE char_length(lotid)=7 ORDER BY handlerid LIMIT 1)  -- parentheses required
   UNION ALL
   SELECT (SELECT handlerid FROM lotintro WHERE char_length(lotid)=7 AND handlerid > t.handlerid ORDER BY handlerid LIMIT 1)
   FROM t
   WHERE t.handlerid IS NOT NULL
   )
SELECT handlerid FROM t WHERE handlerid IS NOT NULL;

"CTE Scan on t  (cost=444.52..446.54 rows=100 width=32) (actual rows=151 loops=1)"
"  Filter: (handlerid IS NOT NULL)"
"  Rows Removed by Filter: 1"
"  Buffers: shared hit=608"
"  CTE t"
"    ->  Recursive Union  (cost=0.42..444.52 rows=101 width=32) (actual rows=152 loops=1)"
"          Buffers: shared hit=608"
"          ->  Limit  (cost=0.42..4.17 rows=1 width=6) (actual rows=1 loops=1)"
"                Buffers: shared hit=4"
"                ->  Index Scan using lotid_btree on lotintro lotintro_1  (cost=0.42..7704.41 rows=2056 width=6) (actual rows=1 loops=1)"
"                      Index Cond: (char_length(lotid) = 7)"
"                      Buffers: shared hit=4"
"          ->  WorkTable Scan on t t_1  (cost=0.00..43.83 rows=10 width=32) (actual rows=1 loops=152)"
"                Filter: (handlerid IS NOT NULL)"
"                Rows Removed by Filter: 0"
"                Buffers: shared hit=604"
"                SubPlan 1"
"                  ->  Limit  (cost=0.42..4.36 rows=1 width=6) (actual rows=1 loops=151)"
"                        Buffers: shared hit=604"
"                        ->  Index Scan using lotid_btree on lotintro  (cost=0.42..2698.13 rows=685 width=6) (actual rows=1 loops=151)"
"                              Index Cond: ((char_length(lotid) = 7) AND (handlerid > t_1.handlerid))"
"                              Buffers: shared hit=604"
"Planning time: 1.574 ms"
**"Execution time: 25.476 ms"**

=========关于数据库的更多信息============================

dataloggerDB=# \d lotintro Table"public.lotintro"

    Column    |            Type             |  Modifiers
 --------------+-----------------------------+--------------
  lotstartdt   | timestamp without time zone | not null
  lotid        | text                        | not null
  ftc          | text                        | not null
  deviceid     | text                        | not null
  packageid    | text                        | not null
  testprogname | text                        | not null
  testprogdir  | text                        | not null
  testgrade    | text                        | not null
  testgroup    | text                        | not null
  temperature  | smallint                    | not null
  testerid     | text                        | not null
  handlerid    | text                        | not null
  numofsite    | text                        | not null
  masknum      | text                        |
  soaktime     | text                        |
  xamsqty      | smallint                    |
  scd          | text                        |
  speedgrade   | text                        |
  loginid      | text                        |
  operatorid   | text                        | not null
  loadboardid  | text                        | not null
  checksum     | text                        |
  lotenddt     | timestamp without time zone | not null
  totaltest    | integer                     | default (-1)
  totalpass    | integer                     | default (-1)
  earnhour     | real                        | default 0
  avetesttime  | real                        | default 0
  Indexes:
  "pkey_lotintro" PRIMARY KEY, btree (lotstartdt, testerid)
  "lotid7_idx" btree (handlerid) WHERE length(lotid) = 7
your version of Postgres,         [PostgreSQL 9.2]
cardinalities (how many rows?),   [411K rows for table lotintro]
percentage for length(lotid) = 7. [298350/411000=  73%]

============= 在将所有内容移植到 PG 9.4 之后 =====================

有索引:

explain (analyze on, BUFFERS on, TIMING OFF) SELECT distinct handlerid from lotintro where length(lotid) = 7

"HashAggregate  (cost=5542.78..5542.79 rows=1 width=6) (actual rows=151 loops=1)"
"  Group Key: handlerid"
"  Buffers: shared hit=14242"
"  ->  Bitmap Heap Scan on lotintro  (cost=39.22..5537.64 rows=2056 width=6) (actual rows=298350 loops=1)"
"        Recheck Cond: (length(lotid) = 7)"
"        Heap Blocks: exact=13313"
"        Buffers: shared hit=14242"
"        ->  Bitmap Index Scan on lotid7_idx  (cost=0.00..38.70 rows=2056 width=0) (actual rows=298350 loops=1)"
"              Buffers: shared hit=929"
"Planning time: 0.256 ms"
"Execution time: 154.657 ms"

没有索引:

explain (analyze on, BUFFERS on, TIMING OFF) SELECT distinct handlerid from lotintro where length(lotid) = 7

"HashAggregate  (cost=19490.11..19490.12 rows=1 width=6) (actual rows=151 loops=1)"
"  Group Key: handlerid"
"  Buffers: shared hit=13316"
"  ->  Seq Scan on lotintro  (cost=0.00..19484.97 rows=2056 width=6) (actual rows=298350 loops=1)"
"        Filter: (length(lotid) = 7)"
"        Rows Removed by Filter: 112915"
"        Buffers: shared hit=13316"
"Planning time: 0.168 ms"
"Execution time: 176.466 ms"

您需要为 WHERE 子句中使用的确切表达式编制索引:http://www.postgresql.org/docs/9.4/static/indexes-expressional.html

CREATE INDEX char_length_lotid_idx ON lotintro (char_length(lotid));

您还可以创建一个 STABLEIMMUTABLE 函数来按照您的建议包装此查询:http://www.postgresql.org/docs/9.4/static/sql-createfunction.html

你最后的建议也是可行的,你要找的是MATERIALIZED VIEWShttp://www.postgresql.org/docs/9.4/static/sql-creatematerializedview.html 这会阻止您编写自定义触发器来更新非规范化 table.

1)

不,函数不会以任何方式保留结果的快照。如果您定义函数 STABLE(这是正确的),则有 一些 性能优化的潜力。 Per documentation:

A STABLE function cannot modify the database and is guaranteed to return the same results given the same arguments for all rows within a single statement.

IMMUTABLE 在这里 是错误的 并且可能导致错误。

所以这可以 极大地 使同一语句中的多个调用受益 - 但这不适合您的用例...

并且 plpgsql 函数的工作方式类似于 准备好的语句,在同一个 session:

中为您提供类似的奖励
  • Difference between language sql and language plpgsql in PostgreSQL functions

2)

尝试 MATERIALIZED VIEW. With or without MV (or some other caching technique), a partial index 对您的特殊情况最有效:

CREATE INDEX lotid7_idx ON lotintro (handlerid)
WHERE  length(lotid) = 7;

记住在应该使用索引的查询中包含索引条件,即使这看起来多余:

  • PostgreSQL does not use a partial index

但是,正如您提供的那样:

percentage for length(lotid) = 7. [298350/411000= 73%]

该索引只有在您可以从中进行仅索引扫描时才会有所帮助,因为该条件几乎没有选择性。由于 table 具有非常宽的行,因此仅索引扫描可以快得多。

松散索引扫描

此外,rows=298350 被折叠为 rows=151,因此松散的索引扫描将支付费用,正如我在此处解释的那样:

  • Optimize GROUP BY query to retrieve latest record per user

或者在Postgres Wiki——其实是基于这个post.

WITH RECURSIVE t AS (
   (SELECT handlerid FROM lotintro
    WHERE  length(lotid) = 7
    ORDER  BY 1 LIMIT 1)

   UNION ALL
   SELECT (SELECT handlerid FROM lotintro
           WHERE  length(lotid) = 7
           AND    handlerid > t.handlerid
           ORDER  BY 1 LIMIT 1)
   FROM  t
   WHERE t.handlerid IS NOT NULL
   )
SELECT handlerid FROM t
WHERE  handlerid IS NOT NULL;

这会更快,但是,与我建议的部分索引 结合使用。由于部分索引的大小只有原来的一半左右,而且更新频率较低(取决于访问模式),因此总体来说更便宜。

如果保持 table 真空以允许仅索引扫描,速度会更快。如果你有很多写入,你可以为这个 table 设置更积极的存储参数:

最后,您可以使用基于此查询的物化视图更快地完成此操作。

由于 3/4 的行满足您的条件 (length(lotid) = 7),索引本身不会有太大帮助。由于仅索引扫描,您可能会使用此索引获得更好的性能:

create index on lotintro using btree(char_length(lotid), handlerid);

但这不是最佳解决方案。因为只有几个不同的值,所以您可以使用称为 loose index scan 的技巧,在您的情况下它应该工作得更快:

WITH RECURSIVE t AS (
   (SELECT handlerid FROM lotintro WHERE char_length(lotid)=7 ORDER BY handlerid LIMIT 1)  -- parentheses required
   UNION ALL
   SELECT (SELECT handlerid FROM lotintro WHERE char_length(lotid)=7 AND handlerid > t.handlerid ORDER BY handlerid LIMIT 1)
   FROM t
   WHERE t.handlerid IS NOT NULL
   )
SELECT handlerid FROM t WHERE handlerid IS NOT NULL;

对于此查询,您还需要创建我上面提到的索引。