难以理解 LSTM 输出。

Trouble understanding LSTM output.

我有两个包含数字序列的数据集。其中一个是我的X,另一个是Y。

例如,

X:
1 0 7 2
4 8 2 0
5 9 2 1
.
.
.

Shape of X is: (10000, 4)

Y:
10 24 5 15
7  6  10 4
13 22 6  2
.
.
.
Shape of Y is: (10000, 4)

X的值在0-10的范围内,Y的值在0-24的范围内。

我在 Keras 中使用 LSTM 实现来训练 X 和 Y。由于 LSTM 模型要求输入是 3 维的,所以我预处理了数据并将 X 更改为 (10000, 4, 10) 并将 Y 更改为 ( 10000, 4, 24).

预处理为one-hot编码后(这些是实际数据,并不代表示例中使用的数据):

X:
[[[1 0 0 ... 0 0 0]
  [0 0 0 ... 0 0 0]
  [0 1 0 ... 0 0 0]
  [1 0 0 ... 0 0 0]]

 [[0 0 1 ... 0 0 0]
  [0 0 0 ... 0 1 0]
  [1 0 0 ... 0 0 0]
  [0 0 0 ... 1 0 0]]

 [[0 0 0 ... 0 0 0]
  [0 0 0 ... 0 0 0]
  [0 0 0 ... 1 0 0]
  [0 0 0 ... 0 0 0]]

 ...

 [[0 0 0 ... 0 0 0]
  [0 0 0 ... 0 0 0]
  [0 0 0 ... 0 0 0]
  [0 0 0 ... 0 0 0]]

 [[0 0 0 ... 1 0 0]
  [0 0 0 ... 0 0 0]
  [0 0 0 ... 0 0 0]
  [0 0 0 ... 0 0 0]]

 [[0 0 0 ... 0 0 0]
  [1 0 0 ... 0 0 0]
  [1 0 0 ... 0 0 0]
  [0 1 0 ... 0 0 0]]]



Y:
[[[0 0 0 ... 0 0 0]
  [0 0 0 ... 0 0 0]
  [0 0 0 ... 0 0 0]
  [0 0 0 ... 1 0 0]]

 [[0 0 0 ... 0 0 0]
  [0 0 0 ... 1 0 0]
  [0 0 0 ... 0 0 0]
  [0 0 0 ... 0 0 0]]

 [[0 0 0 ... 0 0 0]
  [0 0 0 ... 0 0 0]
  [0 0 0 ... 1 0 0]
  [0 0 0 ... 0 0 0]]

 ...

 [[0 0 0 ... 0 0 0]
  [0 0 0 ... 0 0 0]
  [0 0 0 ... 0 0 0]
  [0 0 0 ... 0 0 0]]

 [[0 0 0 ... 0 0 0]
  [0 0 0 ... 0 0 0]
  [0 0 0 ... 0 0 0]
  [0 0 0 ... 1 0 0]]

 [[0 0 0 ... 0 0 0]
  [0 0 0 ... 0 0 0]
  [0 0 0 ... 0 0 0]
  [0 0 0 ... 0 0 0]]]

这是我的 LSTM 模型的代码:

    X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.2, random_state = 1)
    model = Sequential()
    model.add(LSTM(output_dim = 24, input_shape = X_train.shape[1:], return_sequences = True, init = 'glorot_normal', inner_init = 'glorot_normal', activation = 'sigmoid'))
    model.add(LSTM(output_dim = 24, input_shape = X_train.shape[1:], return_sequences = True, init = 'glorot_normal', inner_init = 'glorot_normal', activation = 'sigmoid'))
    model.add(LSTM(output_dim = 24, input_shape = X_train.shape[1:], return_sequences = True, init = 'glorot_normal', inner_init = 'glorot_normal', activation = 'sigmoid'))
    model.add(LSTM(output_dim = 24, input_shape = X_train.shape[1:], return_sequences = True, init = 'glorot_normal', inner_init = 'glorot_normal', activation = 'sigmoid'))
    model.compile(loss = 'categorical_crossentropy', optimizer = 'adam', metrics = ['accuracy'])
    model.fit(X_train, Y_train, nb_epoch = 500, validation_data = (X_test, Y_test))
    model.save('LSTM500.h5')

    predictions = model.predict(X_test)
    predictions = np.array(predictions, dtype = np.float64)
    predictions = predictions.reshape(2000, 4, 24)

输出:

[[[[0.1552688  0.15805855 0.2013046  ... 0.16005482 0.19403476
    0.        ]
   [0.0458279  0.09995601 0.06456595 ... 0.09573169 0.07952237
    0.        ]
   [0.19871283 0.19968285 0.06270849 ... 0.14653654 0.18313469
    0.        ]
   [0.08407309 0.091876   0.09707277 ... 0.12661831 0.12858406
    0.        ]]

  [[0.15482235 0.14433247 0.18260191 ... 0.15641384 0.20746264
    0.        ]
   [0.03096719 0.05375536 0.05373315 ... 0.05018555 0.07592873
    0.        ]
   [0.20420487 0.17884348 0.13145864 ... 0.17901334 0.19768076
    0.        ]
   [0.03465272 0.06732351 0.02182322 ... 0.06144218 0.07827628
    0.        ]]

  [[0.15116604 0.15068266 0.18474537 ... 0.17088319 0.15841168
    0.        ]
   [0.09633015 0.11277901 0.10069521 ... 0.09309217 0.11326427
    0.        ]
   [0.17512578 0.13187788 0.10418645 ... 0.10735759 0.10635827
    0.        ]
   [0.13673681 0.12714103 0.06212005 ... 0.03213149 0.14153068
    0.        ]]

  ...

预测的形状:(1, 2000, 4, 24)

我将预测数组重塑为 (2000, 4, 24)。

[[[0.1552688  0.15805855 0.2013046  ... 0.16005482 0.19403476 0.        ]
  [0.0458279  0.09995601 0.06456595 ... 0.09573169 0.07952237 0.        ]
  [0.19871283 0.19968285 0.06270849 ... 0.14653654 0.18313469 0.        ]
  [0.08407309 0.091876   0.09707277 ... 0.12661831 0.12858406 0.        ]]

 [[0.15482235 0.14433247 0.18260191 ... 0.15641384 0.20746264 0.        ]
  [0.03096719 0.05375536 0.05373315 ... 0.05018555 0.07592873 0.        ]
  [0.20420487 0.17884348 0.13145864 ... 0.17901334 0.19768076 0.        ]
  [0.03465272 0.06732351 0.02182322 ... 0.06144218 0.07827628 0.        ]]

 [[0.15116604 0.15068266 0.18474537 ... 0.17088319 0.15841168 0.        ]
  [0.09633015 0.11277901 0.10069521 ... 0.09309217 0.11326427 0.        ]
  [0.17512578 0.13187788 0.10418645 ... 0.10735759 0.10635827 0.        ]
  [0.13673681 0.12714103 0.06212005 ... 0.03213149 0.14153068 0.        ]]

 ...

我似乎不明白我得到的输出。这些数字是多少?预测数组不应该只包含 0 和 1 中的值(这样,我可以检索实际值)就像 Y_test 一样吗?谢谢。

这些数字是你从最后一层得到的数字,这是一个 sigmoid 层,sigmoid 将 return 值介于 0 和 1 之间,这就是我们在你的输出中看到的。

如何解读这些值?

由于您正在提供并寻找单热输出,您可以 select 最后一个轴中的最大数字并使用 np.argmax(prediction, axis = -1) 在该轴上获取其索引值这应该会给你一个 numpy形状为 (2000,4) 的数组,每个元素都是 [0,24) 之间的数字,与原始数据的格式相同。这些值是您的 LSTM 模型预测的最可能结果。

第二大数字将是第二大可能的结果。