Watson 机器学习部署需要太多时间

Watson machine learning deployment takes too much time

我使用 watson 机器学习服务训练了一个模型。训练过程已经完成,所以我 运行 这些命令行来部署它:

bx ml store training-runs model-XXXXXXX

我得到带有模型 ID 的输出

Starting to store the training-run 'model-XXXXXX' ...
OK
Model store successful. Model-ID is '93sdsdsf05-3ea4-4d9e-a751-5bcfbsdsd3391'.

然后我使用以下方法部署它:

bx ml deploy 93sdsdsf05-3ea4-4d9e-a751-5bcfbsdsd3391 "my-test-model"

问题是我收到一条没完没了的消息:

Checking if content upload is complete ...
Checking if content upload is complete ...
Checking if content upload is complete ...
Checking if content upload is complete ...
Checking if content upload is complete ...

当我签入 COS 结果存储桶时,模型大小约为 25MB,因此部署时间应该不会那么长。我在这里错过了什么吗?

正在使用 Python Client API 部署同一模型:

from watson_machine_learning_client import WatsonMachineLearningAPIClient

client = WatsonMachineLearningAPIClient(wml_credentials)
deployment_details = client.deployments.create( model_id, "model_name")

这很快告诉我部署有错误。奇怪的是用command line interface (CLI)部署时并没有弹出错误。