使用 FunctionTransformer 在特征子集上使用 PCA 的 sklearn 管道

sklearn pipeline with PCA on feature subset using FunctionTransformer

考虑链接 PCA 和回归的任务,其中 PCA 执行降维,回归执行预测。

示例取自 sklearn 文档:

import numpy as np
import matplotlib.pyplot as plt

from sklearn import linear_model, decomposition, datasets
from sklearn.pipeline import Pipeline
from sklearn.model_selection import GridSearchCV

logistic = linear_model.LogisticRegression()

pca = decomposition.PCA()
pipe = Pipeline(steps=[('pca', pca), ('logistic', logistic)])

digits = datasets.load_digits()
X_digits = digits.data
y_digits = digits.target

n_components = [5, 10]
Cs = np.logspace(-4, 4, 3)

param_grid = dict(pca__n_components=n_components, logistic__C=Cs)
estimator = GridSearchCV(pipe,param_grid)
estimator.fit(X_digits, y_digits)

如何使用 FunctionTransformer 仅对特征集的一个子集执行降维(例如,将 PCA 限制为 X_digits 的最后十列)?

您可以先创建一个函数(下面称为 last_ten_columns),returns 输入的最后 10 列 X_digits。创建指向函数的函数转换器,并将其用作管道的第一步。

import numpy as np
import matplotlib.pyplot as plt

from sklearn import linear_model, decomposition, datasets
from sklearn.pipeline import Pipeline
from sklearn.model_selection import GridSearchCV
from sklearn.preprocessing import FunctionTransformer

logistic = linear_model.LogisticRegression()

pca = decomposition.PCA()

def last_ten_columns(X):
    return X[:, -10:]

func_trans = FunctionTransformer(last_ten_columns)

pipe = Pipeline(steps=[('func_trans',func_trans), ('pca', pca), ('logistic', logistic)])

digits = datasets.load_digits()
X_digits = digits.data
y_digits = digits.target

n_components = [5, 10]
Cs = np.logspace(-4, 4, 3)

param_grid = dict(pca__n_components=n_components, logistic__C=Cs)
estimator = GridSearchCV(pipe, param_grid)
estimator.fit(X_digits, y_digits)