我如何显示标签和预测 - PySpark
How do i display labels and predictions - PySpark
创建一个算法来对市场产品进行分类,所以我无法 return 预测的标签,我尝试了几个命令但它们都有错误(如下)。我如何 return 标签和百分比预测(我正在使用交叉验证)?
示例:
我想通知您产品“7 Chakra Bracelet 7 Chakra 手链,蓝色或黑色”,并知道哪个是标签和准确度(此产品的标签 return "Bracelet")
训练数据
data = spark.createDataFrame([
("Bracelet"," 7 Shakra Bracelet 7 chakra bracelet, in blue or black."),
("Bracelet"," Anchor Bracelet Mens Black leather bracelet with gold or silver anchor for men."),
("Bracelet"," Bangle Bracelet Gold bangle bracelet with studded jewels."),
("Bracelet"," Boho Bangle Bracelet Gold boho bangle bracelet with multicolor tassels."),
("Earrings"," Boho Earrings Turquoise globe earrings on 14k gold hooks."),
("Necklace"," Choker with Bead Black choker necklace with 14k gold bead."),
("Necklace"," Choker with Triangle Black choker with silver triangle pendant."),
("Necklace"," Dainty Gold Necklace Dainty gold necklace with two pendants."),
("Necklace"," Dreamcatcher Pendant Necklace Turquoise beaded dream catcher necklace. Silver feathers adorn this beautiful dream catcher, which move and twinkle as you walk."),
("Earrings"," Galaxy Earrings One set of galaxy earrings, with sterling silver clasps."),
("Necklace"," Gold Bird Necklace 14k Gold delicate necklace, with bird between two chains."),
("Earrings"," Gold Elephant Earrings Small 14k gold elephant earrings, with opal ear detail."),
("Earrings"," Guardian Angel Earrings Sterling silver guardian angel earrings with diamond gemstones."),
("Bracelet"," Moon Charm Bracelet Moon 14k gold chain friendship bracelet."),
("Necklace"," Origami Crane Necklace Sterling silver origami crane necklace."),
("Necklace"," Pretty Gold Necklace 14k gold and turquoise necklace. Stunning beaded turquoise on gold and pendant filled double chain design."),
("Necklace"," Silver Threader Necklace Sterling silver chain thread through circle necklace."),
("Necklace"," Stylish Summer Necklace Double chained gold boho necklace with turquoise pendant.")
], ["id", "description"])
令牌、文本处理和矢量计数器
from pyspark.ml.feature import RegexTokenizer, StopWordsRemover, CountVectorizer
from pyspark.ml.classification import LogisticRegression
# regular expression tokenizer
regexTokenizer = RegexTokenizer(inputCol="description", outputCol="words", pattern="\W")
# stop words
add_stopwords = ["http","https","amp","rt","t","c","the"]
stopwordsRemover = StopWordsRemover(inputCol="words", outputCol="filtered").setStopWords(add_stopwords)
# bag of words count
countVectors = CountVectorizer(inputCol="filtered", outputCol="features", vocabSize=10000, minDF=5)
标签创建和数据集创建
from pyspark.ml import Pipeline
from pyspark.ml.feature import OneHotEncoder, StringIndexer, VectorAssembler
label_stringIdx = StringIndexer(inputCol = "id", outputCol = "label")
pipeline = Pipeline(stages=[regexTokenizer, stopwordsRemover, countVectors, label_stringIdx])
# Fit the pipeline to training documents.
pipelineFit = pipeline.fit(data)
dataset = pipelineFit.transform(data)
到目前为止,我的数据集的结果是这样的
填充交叉算法
from pyspark.ml.evaluation import MulticlassClassificationEvaluator
evaluator = MulticlassClassificationEvaluator(predictionCol="prediction")
lr = LogisticRegression(maxIter=20, regParam=0.3, elasticNetParam=0)
from pyspark.ml.tuning import ParamGridBuilder, CrossValidator
# Create ParamGrid for Cross Validation
paramGrid = (ParamGridBuilder()
.addGrid(lr.regParam, [0.1, 0.3, 0.5]) # regularization parameter
.addGrid(lr.elasticNetParam, [0.0, 0.1, 0.2]) # Elastic Net Parameter (Ridge = 0)
# .addGrid(model.maxIter, [10, 20, 50]) #Number of iterations
# .addGrid(idf.numFeatures, [10, 100, 1000]) # Number of features
.build())
# Create 5-fold CrossValidator
cv = CrossValidator(estimator=lr, \
estimatorParamMaps=paramGrid, \
evaluator=evaluator, \
numFolds=5)
cvModel = cv.fit(dataset)
正在创建要分类的数据
testData = spark.createDataFrame([
(10," 7 Shakra Bracelet 7 chakra bracelet, in blue or black."),
(11," Anchor Bracelet Mens Black leather bracelet with gold or silver anchor for men."),
(12," Bangle Bracelet Gold bangle bracelet with studded jewels."),
(13," 7 Shakra Bracelet 7 chakra bracelet, in blue or black."),
(14," Anchor Bracelet Mens Black leather bracelet with gold or silver anchor for men."),
(15," Bangle Bracelet Gold bangle bracelet with studded jewels."),
(100," 7 Shakra Bracelet 7 chakra bracelet, in blue or black."),
(16," Anchor Bracelet Mens Black leather bracelet with gold or silver anchor for men."),
(17," Bangle Bracelet Gold bangle bracelet with studded jewels."),
(101," 7 Shakra Bracelet 7 chakra bracelet, in blue or black."),
(18," Anchor Bracelet Mens Black leather bracelet with gold or silver anchor for men."),
(19," Bangle Bracelet Gold bangle bracelet with studded jewels."),
(104," 7 Shakra Bracelet 7 chakra bracelet, in blue or black."),
(20," Anchor Bracelet Mens Black leather bracelet with gold or silver anchor for men."),
(21," Bangle Bracelet Gold bangle bracelet with studded jewels.")
], ["rowid", "description"])
我创建了一个新数据集,应该通过仅删除 labelIndex 列来对其进行排序
pipeline = Pipeline(stages=[regexTokenizer, stopwordsRemover, countVectors])
# Fit the pipeline to training documents.
pipelineFit = pipeline.fit(testData)
datasetTest = pipelineFit.transform(testData)
这里我用datasetTest计算新的预测
这里一切顺利
现在问题来了,我看不到变量预测的任何信息
我尝试了下面的命令,但出现了所有错误
如果您进一步查看错误跟踪,您会发现:
java.lang.IllegalArgumentException: requirement failed: The columns of A don't match the number of elements of x. A: 6, x: 19
这意味着训练数据和测试数据之间的特征数量不匹配(测试中有 6 个特征,测试中有 19 个特征)。
训练数据
+--------+--------------------+--------------------+--------------------+--------------------+-----+
| id| description| words| filtered| features|label|
+--------+--------------------+--------------------+--------------------+--------------------+-----+
|Bracelet| 7 Shakra Bracele...|[7, shakra, brace...|[7, shakra, brace...| (6,[3],[2.0])| 1.0|
|Bracelet| Anchor Bracelet ...|[anchor, bracelet...|[anchor, bracelet...|(6,[0,2,3,4],[1.0...| 1.0|
测试数据
+---+--------------------+--------------------+--------------------+--------------------+-----+
| id| description| words| filtered| features|label|
+---+--------------------+--------------------+--------------------+--------------------+-----+
| 10| 7 Shakra Bracele...|[7, shakra, brace...|[7, shakra, brace...|(19,[0,1,2,3,10,1...| 8.0|
| 11| Anchor Bracelet ...|[anchor, bracelet...|[anchor, bracelet...|(19,[0,2,3,4,5,7,...| 4.0|
您正在尝试分别对测试和训练数据进行编码,这导致编码数据不匹配。
您需要从组合数据集 (trainData.union(testData)) 开始,其中 testData 没有标签。然后通过使用管道进行转换来对该数据集进行编码。然后将数据拆分回训练和测试,然后训练您的模型并进行预测。
创建一个算法来对市场产品进行分类,所以我无法 return 预测的标签,我尝试了几个命令但它们都有错误(如下)。我如何 return 标签和百分比预测(我正在使用交叉验证)?
示例:
我想通知您产品“7 Chakra Bracelet 7 Chakra 手链,蓝色或黑色”,并知道哪个是标签和准确度(此产品的标签 return "Bracelet")
训练数据
data = spark.createDataFrame([
("Bracelet"," 7 Shakra Bracelet 7 chakra bracelet, in blue or black."),
("Bracelet"," Anchor Bracelet Mens Black leather bracelet with gold or silver anchor for men."),
("Bracelet"," Bangle Bracelet Gold bangle bracelet with studded jewels."),
("Bracelet"," Boho Bangle Bracelet Gold boho bangle bracelet with multicolor tassels."),
("Earrings"," Boho Earrings Turquoise globe earrings on 14k gold hooks."),
("Necklace"," Choker with Bead Black choker necklace with 14k gold bead."),
("Necklace"," Choker with Triangle Black choker with silver triangle pendant."),
("Necklace"," Dainty Gold Necklace Dainty gold necklace with two pendants."),
("Necklace"," Dreamcatcher Pendant Necklace Turquoise beaded dream catcher necklace. Silver feathers adorn this beautiful dream catcher, which move and twinkle as you walk."),
("Earrings"," Galaxy Earrings One set of galaxy earrings, with sterling silver clasps."),
("Necklace"," Gold Bird Necklace 14k Gold delicate necklace, with bird between two chains."),
("Earrings"," Gold Elephant Earrings Small 14k gold elephant earrings, with opal ear detail."),
("Earrings"," Guardian Angel Earrings Sterling silver guardian angel earrings with diamond gemstones."),
("Bracelet"," Moon Charm Bracelet Moon 14k gold chain friendship bracelet."),
("Necklace"," Origami Crane Necklace Sterling silver origami crane necklace."),
("Necklace"," Pretty Gold Necklace 14k gold and turquoise necklace. Stunning beaded turquoise on gold and pendant filled double chain design."),
("Necklace"," Silver Threader Necklace Sterling silver chain thread through circle necklace."),
("Necklace"," Stylish Summer Necklace Double chained gold boho necklace with turquoise pendant.")
], ["id", "description"])
令牌、文本处理和矢量计数器
from pyspark.ml.feature import RegexTokenizer, StopWordsRemover, CountVectorizer
from pyspark.ml.classification import LogisticRegression
# regular expression tokenizer
regexTokenizer = RegexTokenizer(inputCol="description", outputCol="words", pattern="\W")
# stop words
add_stopwords = ["http","https","amp","rt","t","c","the"]
stopwordsRemover = StopWordsRemover(inputCol="words", outputCol="filtered").setStopWords(add_stopwords)
# bag of words count
countVectors = CountVectorizer(inputCol="filtered", outputCol="features", vocabSize=10000, minDF=5)
标签创建和数据集创建
from pyspark.ml import Pipeline
from pyspark.ml.feature import OneHotEncoder, StringIndexer, VectorAssembler
label_stringIdx = StringIndexer(inputCol = "id", outputCol = "label")
pipeline = Pipeline(stages=[regexTokenizer, stopwordsRemover, countVectors, label_stringIdx])
# Fit the pipeline to training documents.
pipelineFit = pipeline.fit(data)
dataset = pipelineFit.transform(data)
到目前为止,我的数据集的结果是这样的
填充交叉算法
from pyspark.ml.evaluation import MulticlassClassificationEvaluator
evaluator = MulticlassClassificationEvaluator(predictionCol="prediction")
lr = LogisticRegression(maxIter=20, regParam=0.3, elasticNetParam=0)
from pyspark.ml.tuning import ParamGridBuilder, CrossValidator
# Create ParamGrid for Cross Validation
paramGrid = (ParamGridBuilder()
.addGrid(lr.regParam, [0.1, 0.3, 0.5]) # regularization parameter
.addGrid(lr.elasticNetParam, [0.0, 0.1, 0.2]) # Elastic Net Parameter (Ridge = 0)
# .addGrid(model.maxIter, [10, 20, 50]) #Number of iterations
# .addGrid(idf.numFeatures, [10, 100, 1000]) # Number of features
.build())
# Create 5-fold CrossValidator
cv = CrossValidator(estimator=lr, \
estimatorParamMaps=paramGrid, \
evaluator=evaluator, \
numFolds=5)
cvModel = cv.fit(dataset)
正在创建要分类的数据
testData = spark.createDataFrame([
(10," 7 Shakra Bracelet 7 chakra bracelet, in blue or black."),
(11," Anchor Bracelet Mens Black leather bracelet with gold or silver anchor for men."),
(12," Bangle Bracelet Gold bangle bracelet with studded jewels."),
(13," 7 Shakra Bracelet 7 chakra bracelet, in blue or black."),
(14," Anchor Bracelet Mens Black leather bracelet with gold or silver anchor for men."),
(15," Bangle Bracelet Gold bangle bracelet with studded jewels."),
(100," 7 Shakra Bracelet 7 chakra bracelet, in blue or black."),
(16," Anchor Bracelet Mens Black leather bracelet with gold or silver anchor for men."),
(17," Bangle Bracelet Gold bangle bracelet with studded jewels."),
(101," 7 Shakra Bracelet 7 chakra bracelet, in blue or black."),
(18," Anchor Bracelet Mens Black leather bracelet with gold or silver anchor for men."),
(19," Bangle Bracelet Gold bangle bracelet with studded jewels."),
(104," 7 Shakra Bracelet 7 chakra bracelet, in blue or black."),
(20," Anchor Bracelet Mens Black leather bracelet with gold or silver anchor for men."),
(21," Bangle Bracelet Gold bangle bracelet with studded jewels.")
], ["rowid", "description"])
我创建了一个新数据集,应该通过仅删除 labelIndex 列来对其进行排序
pipeline = Pipeline(stages=[regexTokenizer, stopwordsRemover, countVectors])
# Fit the pipeline to training documents.
pipelineFit = pipeline.fit(testData)
datasetTest = pipelineFit.transform(testData)
这里我用datasetTest计算新的预测
这里一切顺利
现在问题来了,我看不到变量预测的任何信息
我尝试了下面的命令,但出现了所有错误
如果您进一步查看错误跟踪,您会发现:
java.lang.IllegalArgumentException: requirement failed: The columns of A don't match the number of elements of x. A: 6, x: 19
这意味着训练数据和测试数据之间的特征数量不匹配(测试中有 6 个特征,测试中有 19 个特征)。
训练数据
+--------+--------------------+--------------------+--------------------+--------------------+-----+
| id| description| words| filtered| features|label|
+--------+--------------------+--------------------+--------------------+--------------------+-----+
|Bracelet| 7 Shakra Bracele...|[7, shakra, brace...|[7, shakra, brace...| (6,[3],[2.0])| 1.0|
|Bracelet| Anchor Bracelet ...|[anchor, bracelet...|[anchor, bracelet...|(6,[0,2,3,4],[1.0...| 1.0|
测试数据
+---+--------------------+--------------------+--------------------+--------------------+-----+
| id| description| words| filtered| features|label|
+---+--------------------+--------------------+--------------------+--------------------+-----+
| 10| 7 Shakra Bracele...|[7, shakra, brace...|[7, shakra, brace...|(19,[0,1,2,3,10,1...| 8.0|
| 11| Anchor Bracelet ...|[anchor, bracelet...|[anchor, bracelet...|(19,[0,2,3,4,5,7,...| 4.0|
您正在尝试分别对测试和训练数据进行编码,这导致编码数据不匹配。
您需要从组合数据集 (trainData.union(testData)) 开始,其中 testData 没有标签。然后通过使用管道进行转换来对该数据集进行编码。然后将数据拆分回训练和测试,然后训练您的模型并进行预测。