通过在 python 中使用背景减法进行质心跟踪
Centroid Tracking with by using background subtracting in python
所以我一直在按照本教程进行质心跟踪
https://www.pyimagesearch.com/2018/07/23/simple-object-tracking-with-opencv/
并像教程中提到的那样构建了质心跟踪 class。
现在,当我尝试使用背景减法而不是他正在使用的 CNN 进行检测时,它不起作用,并从 CentroidTracker.py
给我这个问题
for i in range(0, inputCentroids):
TypeError: only integer scalar arrays can be converted to a scalar index
这是我正在使用的代码
for i in range(0, num_frames):
rects = []
#Get the very first image from the video
if (first_iteration == 1):
ret, frame = cap.read()
frame = cv2.resize(frame, (imageHight,imageWidth))
first_frame = copy.deepcopy(frame)
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
height, width = frame.shape[:2]
print("shape:", height,width)
first_iteration = 0
else:
ret, frame = cap.read()
frame = cv2.resize(frame, (imageHight,imageWidth))
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
forgroundMask = backgroundSub.apply(frame)
#Get contor for each person
_, contours, _ = cv2.findContours(forgroundMask.copy(),cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
contours = filter(lambda cont: cv2.contourArea(cont) > 20, contours)
#Get bbox from the controus
for c in contours:
(x, y, w, h) = cv2.boundingRect(c)
rectangle = [x, y, (x + w), (y + h)]
rects.append(rectangle)
cv2.rectangle(frame, (rectangle[0], rectangle[1]), (rectangle[2], rectangle[3]),
(0, 255, 0), 2)
objects = ct.update(rects)
for (objectID, centroid) in objects.items():
text = "ID:{}".format(objectID)
cv2.putText(frame, text, (centroid[0] - 10, centroid[1] - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
cv2.circle(frame, (centroid[0], centroid[1]), 4, (0, 255, 0), -1)
'''Display Windows'''
cv2.imshow('FGMask', forgroundMask)
frame1 = frame.copy()
cv2.imshow('MOG', frame1)
cv2.imshow('frame', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
代码在
处被破坏
objects = ct.update(rects)
行。
这是教程中 CentroidTracker 的实现:
from scipy.spatial import distance as dist
from collections import OrderedDict
import numpy as np
#Makes a the next unique object ID with
#2 ordered dictionaries
class CentroidTracker():
def __init__(self, maxDisappeared = 50):
self.nextObjectID = 0
self.objects = OrderedDict()
self.disappeared = OrderedDict()
self.maxDisappeared = maxDisappeared
def register(self, centroid):
self.objects[self.nextObjectID] = centroid
self.disappeared[self.nextObjectID] = 0
self.nextObjectID += 1
def deregister(self, objectID):
del self.objects[objectID]
del self.disappeared[objectID]
def update(self, rects):
if len(rects) == 0:
for objectID in self.disappeared.keys():
self.disappeared[objectID] += 1
if self.disappeared[objectID] > self.maxDisappeared:
self.deregister(objectID)
return self.objects
inputCentroids = np.zeros((len(rects), 2), dtype="int")
for (i, (startX, startY, endX, endY)) in enumerate(rects):
cX = int((startX + endX) / 2.0)
cY = int((startY + endY) / 2.0)
inputCentroids[i] = (cX, cY)
if len(self.objects) == 0:
for i in range(0, inputCentroids):
self.register(inputCentroids[i])
else:
objectIDs = list(self.objects.keys())
objectCentroids = list(self.objects.values())
D = dist.cdist(np.array(objectCentroids), inputCentroids)
rows = D.min(axis=1).argsort()
cols = D.argmin(axis=1)[rows]
usedRows = set()
usedCols = set()
for (row, col) in zip(rows, cols):
if row in usedRows or col in usedCols:
continue
objectID = objectIDs[row]
self.objects[objectID] = inputCentroids[col]
self.disappeared[objectID] = 0
usedRows.add(row)
usedCols.add(col)
# compute both the row and column index we have NOT yet
# examined
unusedRows = set(range(0, D.shape[0])).difference(usedRows)
unusedCols = set(range(0, D.shape[1])).difference(usedCols)
if D.shape[0] >= D.shape[1]:
# loop over the unused row indexes
for row in unusedRows:
# grab the object ID for the corresponding row
# index and increment the disappeared counter
objectID = objectIDs[row]
self.disappeared[objectID] += 1
# check to see if the number of consecutive
# frames the object has been marked "disappeared"
# for warrants deregistering the object
if self.disappeared[objectID] > self.maxDisappeared:
self.deregister(objectID)
else:
for col in unusedCols:
self.register(inputCentroids[col])
# return the set of trackable objects
return self.objects
我有点迷失在我在这里做错了什么。我应该做的就是将边界框 (x,y,x+w, y+h) 传递到正确的 rects[] 列表中,并且应该为此给出类似的结果,或者我错了并且不明白这是如何工作的?任何帮助将不胜感激
您忘记了 len 函数:for i in range(0, len(inputCentroids)):
按照 Axel Puig 所说的进行操作,然后将此行添加到主方法中
objects = ct.update(rects)
if objects is not None:
for (objectID, centroid) in objects.items():
text = "ID:{}".format(objectID)
cv2.putText(frame, text, (centroid[0] - 10, centroid[1] - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
cv2.circle(frame, (centroid[0], centroid[1]), 4, (0, 255, 0), -1)
这解决了问题。我认为发生的事情是第一帧没有初始化跟踪器所以我需要确保它不是 None 然后它在那之后工作
所以我一直在按照本教程进行质心跟踪 https://www.pyimagesearch.com/2018/07/23/simple-object-tracking-with-opencv/ 并像教程中提到的那样构建了质心跟踪 class。
现在,当我尝试使用背景减法而不是他正在使用的 CNN 进行检测时,它不起作用,并从 CentroidTracker.py
给我这个问题for i in range(0, inputCentroids):
TypeError: only integer scalar arrays can be converted to a scalar index
这是我正在使用的代码
for i in range(0, num_frames):
rects = []
#Get the very first image from the video
if (first_iteration == 1):
ret, frame = cap.read()
frame = cv2.resize(frame, (imageHight,imageWidth))
first_frame = copy.deepcopy(frame)
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
height, width = frame.shape[:2]
print("shape:", height,width)
first_iteration = 0
else:
ret, frame = cap.read()
frame = cv2.resize(frame, (imageHight,imageWidth))
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
forgroundMask = backgroundSub.apply(frame)
#Get contor for each person
_, contours, _ = cv2.findContours(forgroundMask.copy(),cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
contours = filter(lambda cont: cv2.contourArea(cont) > 20, contours)
#Get bbox from the controus
for c in contours:
(x, y, w, h) = cv2.boundingRect(c)
rectangle = [x, y, (x + w), (y + h)]
rects.append(rectangle)
cv2.rectangle(frame, (rectangle[0], rectangle[1]), (rectangle[2], rectangle[3]),
(0, 255, 0), 2)
objects = ct.update(rects)
for (objectID, centroid) in objects.items():
text = "ID:{}".format(objectID)
cv2.putText(frame, text, (centroid[0] - 10, centroid[1] - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
cv2.circle(frame, (centroid[0], centroid[1]), 4, (0, 255, 0), -1)
'''Display Windows'''
cv2.imshow('FGMask', forgroundMask)
frame1 = frame.copy()
cv2.imshow('MOG', frame1)
cv2.imshow('frame', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
代码在
处被破坏objects = ct.update(rects)
行。
这是教程中 CentroidTracker 的实现:
from scipy.spatial import distance as dist
from collections import OrderedDict
import numpy as np
#Makes a the next unique object ID with
#2 ordered dictionaries
class CentroidTracker():
def __init__(self, maxDisappeared = 50):
self.nextObjectID = 0
self.objects = OrderedDict()
self.disappeared = OrderedDict()
self.maxDisappeared = maxDisappeared
def register(self, centroid):
self.objects[self.nextObjectID] = centroid
self.disappeared[self.nextObjectID] = 0
self.nextObjectID += 1
def deregister(self, objectID):
del self.objects[objectID]
del self.disappeared[objectID]
def update(self, rects):
if len(rects) == 0:
for objectID in self.disappeared.keys():
self.disappeared[objectID] += 1
if self.disappeared[objectID] > self.maxDisappeared:
self.deregister(objectID)
return self.objects
inputCentroids = np.zeros((len(rects), 2), dtype="int")
for (i, (startX, startY, endX, endY)) in enumerate(rects):
cX = int((startX + endX) / 2.0)
cY = int((startY + endY) / 2.0)
inputCentroids[i] = (cX, cY)
if len(self.objects) == 0:
for i in range(0, inputCentroids):
self.register(inputCentroids[i])
else:
objectIDs = list(self.objects.keys())
objectCentroids = list(self.objects.values())
D = dist.cdist(np.array(objectCentroids), inputCentroids)
rows = D.min(axis=1).argsort()
cols = D.argmin(axis=1)[rows]
usedRows = set()
usedCols = set()
for (row, col) in zip(rows, cols):
if row in usedRows or col in usedCols:
continue
objectID = objectIDs[row]
self.objects[objectID] = inputCentroids[col]
self.disappeared[objectID] = 0
usedRows.add(row)
usedCols.add(col)
# compute both the row and column index we have NOT yet
# examined
unusedRows = set(range(0, D.shape[0])).difference(usedRows)
unusedCols = set(range(0, D.shape[1])).difference(usedCols)
if D.shape[0] >= D.shape[1]:
# loop over the unused row indexes
for row in unusedRows:
# grab the object ID for the corresponding row
# index and increment the disappeared counter
objectID = objectIDs[row]
self.disappeared[objectID] += 1
# check to see if the number of consecutive
# frames the object has been marked "disappeared"
# for warrants deregistering the object
if self.disappeared[objectID] > self.maxDisappeared:
self.deregister(objectID)
else:
for col in unusedCols:
self.register(inputCentroids[col])
# return the set of trackable objects
return self.objects
我有点迷失在我在这里做错了什么。我应该做的就是将边界框 (x,y,x+w, y+h) 传递到正确的 rects[] 列表中,并且应该为此给出类似的结果,或者我错了并且不明白这是如何工作的?任何帮助将不胜感激
您忘记了 len 函数:for i in range(0, len(inputCentroids)):
按照 Axel Puig 所说的进行操作,然后将此行添加到主方法中
objects = ct.update(rects)
if objects is not None:
for (objectID, centroid) in objects.items():
text = "ID:{}".format(objectID)
cv2.putText(frame, text, (centroid[0] - 10, centroid[1] - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
cv2.circle(frame, (centroid[0], centroid[1]), 4, (0, 255, 0), -1)
这解决了问题。我认为发生的事情是第一帧没有初始化跟踪器所以我需要确保它不是 None 然后它在那之后工作