将给出的答案解释为两个数组

Interpreting an answer given as two arrays

这是什么意思

The edges of the minimum spanning tree are returned in array mst (of size n-1 by 2)

?

当我运行程序时,在某些时候显示

this two arrays

但是我不知道如何将其解释为最小生成树的边。

如何取边?有没有办法绘制这个答案?

有人可以帮忙吗?

这是代码。

function [mst, cost] = prim(A)
[n,n] = size(A);                           
A, n, pause,

if norm(A-A','fro') ~= 0 ,                 
  disp(' Error:  Adjacency matrix must be symmetric ') 
  return,
end;

intree = [1];  number_in_tree = 1;  
number_of_edges = 0;
notintree = [2:n]';  number_notin_tree= n-1;

in = intree(1:number_in_tree),                
out = notintree(1:number_notin_tree),
pause, 

while number_in_tree < n,
  mincost = Inf;                             
  for i=1:number_in_tree,               
    for j=1:number_notin_tree,
      ii = intree(i);  jj = 
      notintree(j);
      if A(ii,jj) < mincost, 
        mincost = A(ii,jj); jsave = j; 
        iisave = ii; jjsave = jj;   
      end;
    end;
  end;

  number_of_edges = number_of_edges +1;      
  mst(number_of_edges,1) = iisave;            
  mst(number_of_edges,2) = jjsave;
  costs(number_of_edges,1) = mincost;

  number_in_tree = number_in_tree + 1;        
  intree = [intree; jjsave];                  
  for j=jsave+1:number_notin_tree,            
    notintree(j-1) = notintree(j);
  end;
  number_notin_tree = number_notin_tree - 1;  

  in = intree(1:number_in_tree),              
  out = notintree(1:number_notin_tree), 
  pause,
end;

disp(' Edges in minimum spanning tree and their costs: ')
[mst  costs]                                 
cost = sum(costs)

一条边可以由它连接的两个顶点唯一标识。 mst 的每一行包含跨越边的两个顶点的两个索引。

输入图由一组顶点和连接它们的边组成,表示为邻接矩阵A。如果 A(i,j) 为真,则顶点 i 和 j 相邻(即共享一条边)。在输出矩阵 mst 中,这条边将由 mst(index,:) = [i,j].

表示